Skip to main content
Log in

The nonstrange dibaryon and hidden-color effect in a chiral quark model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The exotic nonstrange \( \Delta\Delta\) dibaryon with \( I(J^{P}) = 0(3^{+})\) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel (CC is important. In the present work, we further investigate another exotic nonstrange \( \Delta\Delta\) dibaryon with \( I(J^{P}) = 3(0^{+})\) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the \( \Delta\Delta\) -CC system with \( I(J^{P}) = 3(0^{+})\) within the framework of resonating group method (RGM). We find that the binding energy of \( I(J^{P}) = 3(0^{+})\) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the \( I(J^{P}) = 3(0^{+})\) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the \( \Delta\Delta\) channel and higher than the mass of \( N\Delta\pi\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bashkanov et al., Phys. Rev. Lett. 102, 052301 (2009)

    Article  ADS  Google Scholar 

  2. WASA-at-COSY Collaboration (P. Adlarson et al.), Phys. Rev. Lett. 106, 242302 (2011)

    Article  Google Scholar 

  3. WASA-at-COSY Collaboration & SAID DAC (P. Adlarson et al.), Phys. Rev. Lett. 112, 202301 (2014)

    Article  ADS  Google Scholar 

  4. WASA-at-COSY Collaboration & SAID DAC (P. Adlarson et al.), Phys. Rev. C 90, 035204 (2014)

    ADS  Google Scholar 

  5. F.J. Dyson, N.H. Xuong, Phys. Rev. Lett. 13, 815 (1964)

    Article  ADS  Google Scholar 

  6. A. Gal, H. Garcilazo, Phys. Rev. Lett. 111, 172301 (2013)

    Article  ADS  Google Scholar 

  7. A. Gal, H. Garcilazo, Nucl. Phys. A 928, 73 (2014)

    Article  ADS  Google Scholar 

  8. H.X. Huang, J.L. Ping, F. Wang, Phys. Rev. C 89, 034001 (2014)

    Article  ADS  Google Scholar 

  9. H.X. Chen, E.L. Cui, W. Chen, T.G. Steele, S.L. Zhu, Phys. Rev. C 91, 025204 (2015)

    Article  ADS  Google Scholar 

  10. Y. Dong, P. Shen, F. Huang, Z. Zhang, Phys. Rev. C 91, 064002 (2015)

    Article  ADS  Google Scholar 

  11. M. Bashkanov, H. Clement, T. Skorodko, Eur. Phys. J. A 51, 87 (2015)

    Article  ADS  Google Scholar 

  12. X.Q. Yuan, Z.Y. Zhang, Y.W. Yu, P.N. Shen, Phys. Rev. C 60, 045203 (1999)

    Article  ADS  Google Scholar 

  13. Z.Y. Zhang, Y.W. Yu, P.N. Shen, L.R. Dai, A. Faessler, U. Straub, Nucl. Phys. A 625, 59 (1997)

    Article  ADS  Google Scholar 

  14. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  15. M. Kamimura, Suppl. Prog. Theor. Phys. 62, 236 (1977)

    Article  ADS  Google Scholar 

  16. Q.B. Li, P.N. Shen, Z.Y. Zhang, Y.W. Yu, Nucl. Phys. A 683, 487 (2001)

    Article  ADS  Google Scholar 

  17. Y.W. Yu, Z.Y. Zhang, P.N. Shen, L.R. Dai, Phys. Rev. C 52, 3393 (1995)

    Article  ADS  Google Scholar 

  18. L.R. Dai, Z.Y. Zhang, Y.W. Yu, P. Wang, Nucl. Phys. A 727, 321 (2003)

    Article  ADS  Google Scholar 

  19. M. Gell-Mann, M. Levy, Nuovo Cimento 16, 705 (1960)

    Article  MathSciNet  Google Scholar 

  20. A.M. Kusainov, V.G. Neudatchin, I.T. Obukhovsky, Phys. Rev. C 44, 2343 (1991)

    Article  ADS  Google Scholar 

  21. A. Buchmann, E. Fernandez, K. Yazaki, Phys. Lett. B 269, 35 (1991)

    Article  ADS  Google Scholar 

  22. E.M. Henley, G.A. Miller, Phys. Lett. B 251, 453 (1991)

    Article  ADS  Google Scholar 

  23. Z.Y. Zhang, Y.W. Yu, C.R. Ching, T.H. Ho, Z.D. Lu, Phys. Rev. C 61, 065204 (2000)

    Article  ADS  Google Scholar 

  24. K. Shimizu, Rep. Prog. Phys. 52, 1 (1989)

    Article  ADS  Google Scholar 

  25. Z.Y. Zhang, Y.W. Yu, P.N. Shen, X.Y. Shen, Y.B. Dong, Nucl. Phys. A 561, 595 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Dai.

Additional information

Communicated by R. Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L.R., Zhang, Y.N., Sun, Y.L. et al. The nonstrange dibaryon and hidden-color effect in a chiral quark model. Eur. Phys. J. A 52, 295 (2016). https://doi.org/10.1140/epja/i2016-16295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16295-6

Navigation