Skip to main content
Log in

Challenging fission dynamics around the barrier: The case of 34S + 186W

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the 34S + 186W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the (v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt \( \gamma\)-rays is reported, and encouraging perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.-H. Schmidt et al., Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  2. W.J. Swiatecki, Phys. Scr. 24, 113 (1981)

    Article  ADS  Google Scholar 

  3. R. du Rietz et al., Phys. Rev. C 88, 054618 (2013)

    Article  ADS  Google Scholar 

  4. J. Randrup, P. Moeller, Phys. Rev. C 88, 064606 (2013)

    Article  ADS  Google Scholar 

  5. R. Yanez et al., Phys. Rev. C 88, 014606 (2013)

    Article  ADS  Google Scholar 

  6. Y. Aritomo et al., Phys. Rev. C 80, 064604 (2009)

    Article  ADS  Google Scholar 

  7. Y. Aritomo et al., Phys. Rev. C 85, 044614 (2012)

    Article  ADS  Google Scholar 

  8. K. Nishio et al., Phys. Rev. C 82, 044604 (2010)

    Article  ADS  Google Scholar 

  9. I.M. Itkis et al., Phys. Rev. C 83, 064613 (2011)

    Article  ADS  Google Scholar 

  10. G.N. Knyazheva et al., Phys. Rev. C 75, 064602 (2007) and references therein

    Article  ADS  Google Scholar 

  11. A. Nasirov et al., Int. J. Mod. Phys. E 18, 841 (2009)

    Article  ADS  Google Scholar 

  12. R.G. Thomas et al., Phys. Rev. C 77, 034610 (2008)

    Article  ADS  Google Scholar 

  13. C.J. Lin et al., J. Phys. Conf. Ser. 420, 012126 (2013)

    Article  ADS  Google Scholar 

  14. D. Jacquet, M. Morjean, Prog. Part. Nucl. Phys. 63, 155 (2009)

    Article  ADS  Google Scholar 

  15. Y. Aritomo, M. Ohta, Nucl. Phys. A 753, 152 (2005)

    Article  ADS  Google Scholar 

  16. L. Donadille et al., Nucl. Phys. A 656, 259 (1999)

    Article  ADS  Google Scholar 

  17. Y. Aritomo et al., Nucl. Phys. A 759, 309 (2005)

    Article  ADS  Google Scholar 

  18. B.B. Back et al., Phys. Rev. C 41, 1495 (1990)

    Article  ADS  Google Scholar 

  19. G. Chubarian et al., Phys. Rev. Lett. 87, 052701 (2001)

    Article  ADS  Google Scholar 

  20. K. Kim et al., Phys. Rev. C 91, 064608 (2015) and references therein

    Article  ADS  Google Scholar 

  21. H.R. Bowman et al., Phys. Rev. Lett. 12, 195 (1975)

    Article  ADS  Google Scholar 

  22. I. Ahmad, W. Phillips, Rep. Prog. Phys. 58, 1415 (1995)

    Article  ADS  Google Scholar 

  23. H. Hua et al., Phys. Rev. C 65, 064325 (2002)

    Article  ADS  Google Scholar 

  24. A. Navin, M. Rejmund, McGraw-Hill Yearbook of Science and Technology (McGraw-Hill, 2014) and the online edition Access Science

  25. E.M. Kozulin et al., Instrum. Exp. Tech. 51, 44 (2008)

    Article  Google Scholar 

  26. http://gammapool.lnl.infn.it/index/home/Gammapool_10_years_celebration.htm

  27. A. Navin et al., Phys. Lett. B 728, 136 (2014)

    Article  ADS  Google Scholar 

  28. A. Astier et al., Phys. Rev. C 88, 024321 (2013) and references therein

    Article  ADS  Google Scholar 

  29. W. Urban et al., Phys. Rev. C 85, 014329 (2012)

    Article  ADS  Google Scholar 

  30. A. Bogachev et al., Eur. Phys. J. A 34, 23 (2007)

    Article  ADS  Google Scholar 

  31. Keller et al., Phys. Rev. C 36, 1364 (1987)

    Article  ADS  Google Scholar 

  32. M.G. Itkis, A.Ya. Rusanov, Phys. Part. Nucl. 29, 160 (1998)

    Article  Google Scholar 

  33. J.R. Nix, W.J. Swiatecki, Nucl. Phys. 71, 1 (1965)

    Article  Google Scholar 

  34. G. Chubarian et al., Phys. At. Nucl. 71, 956 (2008)

    Article  Google Scholar 

  35. A.Yu. Chizhov, Phys. Rev. C 67, 011603(R) (2003)

    Article  ADS  Google Scholar 

  36. M.W. Simon et al., Nucl. Instrum. Methods Phys. Res. A 452, 205 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Harca.

Additional information

Communicated by Alexandra Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozulin, E.M., Vardaci, E., Harca, I.M. et al. Challenging fission dynamics around the barrier: The case of 34S + 186W. Eur. Phys. J. A 52, 293 (2016). https://doi.org/10.1140/epja/i2016-16293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16293-8

Navigation