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Abstract. We discuss the possibility of implementing axiomatic nonextensive statistics, where it is conjec-
tured that the phase-space volume determines the (non)extensive entropy, on the particle production
at NICA energies. Both Boltzmann-Gibbs and Tsallis statistics are very special cases of this generic
(non)extensivity. We conclude that the lattice thermodynamics is ab initio extensive and additive and
thus the nonextensive approaches including Tsallis statistics categorically are not matching with them,
while the particle production, for instance the particle ratios at various center-of-mass energies, is likely a
nonextensive process but certainly not of Tsallis type. The resulting freezeout parameters, the temperature
and the chemical potentials, are approximately compatible with the ones deduced from Boltzmann-Gibbs
statistics.

1 Introduction

Besides beam extraction from the nuclotron, the existing
accelerator of heavy ions at the Joint Institute for Nuclear
Research (JINR), the future Nuclotron based Ion Collider
fAcility (NICA) foresees the construction of a collider and
three detectors; multi-purpose detector (MPD), baryonic
matter at nuclotron (BM@N) and spin physics detector
(SPD). NICA is designed to cover a wide range of the
quantum choromodynamic (QCD) phase diagram at the
highest baryonic density. The nucleon-nucleon center-of-
mass energies (

√
sNN ) at NICA cover the range from 4 up

to 11GeV at luminosity ∼ 1027 cm−2 · s−1 for Au79+, at
which a maximal net-baryon (freezeout) density shall be
formed. This makes NICA optimum for the exploration of
compressed nuclear matter and reveal essential properties
of QCD at high density. Furthermore, the various colliding
ions available in this energy range and the high luminos-
ity enable NICA verify novel aspects of the high-energy
collisions.

In the present work, we discuss the theoretical ideas
about the nonextensive statistics and its role in charac-
terizing the power scaling and the statistical nature of the
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particle production at finite temperature and high density.
Section 2 is devoted to the various proposals for the nonex-
tensive statistics at high density. An axiomatic nonexten-
sive partition function shall be presented in sect. 3. Impli-
cations on lattice QCD thermodynamics and reproduction
of various particle ratios shall be discussed in the succes-
sive two sections, respectively. The final conclusions are
elaborated in sect. 4.

2 Nonextensive statistics at high density

In a system consisting of two isolated subsystems (A
and B), where ΩA and ΩB are the respective numbers
of states, extensive entropy is guaranteed if S(ΩA+B) =
S(ΩA)+S(ΩB). The additivity is defined as S(ΩA ΩB) =
S(ΩA)+S(ΩB) [1,2]. Both extensivity and additivity coin-
cide if ΩA+B = ΩA ΩB [1], which is obviously fulfilled for
Boltzmann-Gibbs (BG) statistics; S[p]=

∑Ω
i g(pi), where

g(pi) = −pi ln pi.
In a recent work [3], we have shown that the blind im-

plementation of Tsallis algebra (replacing exponential and
logarithmic functions with their Tsallis counterparts) [4–
6] in the partition function of the hadron resonance gas
(HRG) model, which is —per definition— constructed
from summing up independent contributions from differ-
ent hadron resonances, fails to assure full incorporation of
nonextensivity (due to correlations or interactions, among
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others) in such statistical thermal models. The resulting
HRG is no longer able to reproduce the lattice QCD calcu-
lations, and furthermore results in very low temperatures
even from the statistical fitting with the transverse mo-
mentum spectra (pT ), which are exceptionally (but seem-
ingly unjustly) celebrated as the best implication for the
Tsallis statistics in high-energy physics [7, 8].

The resulting chemical freezeout phase diagram is very
different from the one deduced from extensive statisti-
cal models [9]. The latter fits well with various recent
lattice calculations [10] and different experimental mea-
surements. For example, the freezeout temperatures deter-
mined from the thermal ensemble in which Tsallis statis-
tics is implemented, are much smaller than the tempera-
tures characterizing the extensive freezeout [10].

Concretely, according to Tsallis statistics, the resulting
nonextensive temperature has been interpreted [11].

– First, due to fundamental differences between BG- and
Tsallis statistics and hence an extrapolation of the or-
dinary Tch has been proposed [12]

Tq = Tch + (q − 1) k, (1)

where constant k is modelled to be dependent on the
so-called energy transfer between the source and the
surrounding. At Tch = 192± 15MeV, k = −(950± 10)
MeV [13].

– Second, based on a physical model of finite thermo-
stat [14–16]

Tch = Tq exp
(

−Sq

C

)

, (2)

where C is finite heat reservoir capacity, which to-
gether with the fluctuations in T modify the canonical
exponential weight factor [16]. It is assumed that C
determines whether q, which shall be elaborated later
on, is smaller or larger than unity.

Recently, Bialas explained the incompleteness of the
claim that the transverse-momentum distribution of dif-
ferent produced particles at high energy is to be repro-
duced (actually fitted) from statistical models employing
Tsallis algebra [17]. First, the contradiction between the
proposed applicability of such statistical models at high
energy and the perturbative QCD, which likely dominates
such an energy region, remains unsolved. Second, the de-
cay of statistical clusters can be scaled as power laws very
close to the ones from the Tsallis statistics. Such power
laws seem to exist over a wide range of transverse mo-
menta. Therefore, the decay of statistical clusters might
explain the surprising agreement between the measured
transverse momenta and the calculations from statistical
models with Tsallis algebra. In other words, the power-law
scaling might be stemming from the decay of statistical
cluster rather than the Tsallis-nonextensivity.

We show that the nonextensivity of statistical ther-
modynamics plays an essential role in describing various
aspects of high-energy physics, especially at high density.

NICA precise measurements considerably improve the cer-
tainties of the experimental quantities, which shall be uti-
lized in exacting the nonextensivity of the particle pro-
duction, that is likely to accompany critical phenomena,
such as the phase transitions and/or the critical endpoint
and/or the out-of-equilibrium processes. These quantities
include the particle yields and the particle ratios, the
transverse momenta, the higher-order moments, etc.

The assumption that the high-energy collision goes
through several successive processes, is now very widely
accepted. Most of them, for instance the hadronization
processes, are strongly correlated and radically changing
their properties, symmetries and degrees of freedom [2].
Such an ensemble violates one of the four Shannon-
Khinchin axioms [18, 19]. Therefore, the entropic nonex-
tensivity should be fully assured, where the Tsallis entropy
is a very special type. In light of this, we mention two in-
gredients.
– First, long time ago, a pioneering nonextensive gen-

eralization to Hagedorn’s approach was proposed [20].
An interesting result on the agreement between the
temperature fluctuations and the high-energy scat-
tering measurements was reported [21]. Recently, su-
perstatistics rather than Tsallis was introduced as
the relevant nonextensive approach for high-energy
physics [22].

– Second, it was shown that Tsallis statistics likely
violates CPT symmetry [23]. From Kubo-Martin-
Schwinger (KMS) relation [24, 25], a kind of generic
quantum statistical distributions has been proposed, in
which the exponential function fulfilling that expκ(x) ·
expκ(−x) = 1, should be re-expressed as

expκ(x) =
{[

1 + (b κ x)2
]1/2

+ b κ x
}1/κ

, (3)

b =
[expq(x)]κ − [expq(−x)]κ

2κx
, (4)

known as κ-statistics, for constant b, only. q differing
from unity characterizes Tsallis statistics, κ = 1/(1−q)
and q-exponential function expq(−x) [4–6]. For an ar-
bitrary b, a more general form for the quantum sta-
tistical distribution should be obtained. We have eval-
uated κ-statistics and noticed (not shown here) that
the numerical estimation for the actual implementa-
tion of the logarithmic function is similar to the one
proposed by Tsallis algebra. But the resulting T con-
siderably differs from the Boltzmannian one. It is also
true that this fit parameter is not the same when pT

or mT or mT −m, or the Lorentz-boosted mT −m dis-
tributions are taken into consideration. We conclude
that κ-algebra actually does not considerably improve
the confrontation with the high-energy and the lattice
thermodynamics, for instance, relative to Tsallis.

2.1 Entropies leading to nonexponential canonical
distributions

Here, we shortly list out various types of entropies leading
to nonexponential canonical distributions [2, 16].
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– Renyi entropy is a generalisation of Boltzmann-Gibbs-
Shannon entropy [26]:

SR =
1

1 − q
ln

Ω∑

i

pq
i , (5)

where pi is the probability of the i-th state and the
parameter q possesses various physical meanings.

– Tsallis nonextensive entropy [4]:

ST =
1

1 − q
ln

Ω∑

i

(pq
i − pi). (6)

– Generalized entropies assuring extensivity and thus
the possibility of considering interacting statistical sys-
tems, sect. 2.3 [2]:

Sq[p] =
Ω∑

i=1

g(pi), (7)

where the degree of nonextensivity in the function g,
which can have any functional form, for instance in-
complete gamma function, is restrictively determined
by the four Khinchin axioms [18,19].

2.2 Correspondence of phase space and nonextensivity
in high-energy collisions

As discussed in ref. [3], a great discrepancy between the
extensive (q = 1) and the nonextensive (q �= 1, i.e. Tsal-
lis) treatment for high-energy collisions and the lattice
QCD calculations is observed. It was proposed that this
could be interpreted due to the differences between the
power laws imposed by Tsallis statistics and the Boltz-
mann factor. Despite the remarkably low temperature de-
duced from the statistical fitting of Tsallis algebra and the
transverse momentum spectra,

– an ad hoc factorization was imposed to the Tsallis-
statistics. This factorization is only valid in the system
of interest that can be divided into micro states, and
down to single states with single particles and even so
it was implemented in a mathematically improper way.

– Even the mathematically correct factorization [27–29]
is nothing but an approximative approach to the ex-
act Tsallis statistics. In other words, Tsallis statistics
describes a special case in a general way and what is
so far implemented in high-energy and lattice thermo-
dynamics is an approximation to that statistics.

– Last but not least, a mean value for q was considered
instead of the standard average. The Tsallis statistics
should be implemented to micro or even single states
and accordingly, qi should be first assigned to each i-th
micro or single state. Out of this, one has to estimate
the standard average in order to replace the mean value
used so far.

The question is how should the statistics which de-
scribes the phase-space volume, the number of states and

the elementary cells be modified when describing corre-
lations among non-Boltzmannian subsystems? In case of
locally correlated, equal and distinguishable Ω subsys-
tems, the extensive Boltzmann-Gibbs entropy can be uti-
lized [30],
– if such subsystems become globally correlated, a vast

class of entropies can be implemented, where q �= 1 is
one special case,

– if these subsystems become noncorrelated (indepen-
dent), Boltzmann-Gibbs entropy becomes additive as
well, and

– in case that all marginal probabilities of discrete bi-
nary subsystems have been reached, an asymptotic
scale freedom is obtained. Such duality likely fixes a
unique escort probability [31].

It was concluded [31] that the dependence of the complex-
ity of generalized entropy on the phase space might not
entirely be given by the simple binary correlations.

2.3 Distribution function and axiomatic entropy

For a large statistical system, the generalized entropies can
be classified according to their asymptotic properties [1].
Two classes have been proposed [1]. To each of them, a
scaling function is assigned, which is characterized by the
exponents c or d for first or second property, respectively,

Sc,d[p] =
Ω∑

i=1

AΓ (d + 1, 1 − c log pi) − B pi, (8)

where Γ (a, b) =
∫ ∞

b
dt ta−1 exp(−t) is the incomplete

gamma-function, and A and B are arbitrary parameters.
In the limit that Ω → ∞, then each of the asymptotic
subsystems can be described by eq. (8). The universal-
ity class (c, d) does not only characterize the entropy in
a complete way (whether extensive or nonextensive), but
also specifies the correspondent distribution function [1],

εc,d,r(x) = exp
{

−d

1 − c

[
Wk

(
B(1 − x/r)1/d

)
− Wk(B)

]}

,

(9)
where Wk is the k-th Lambert-W function, which has real
solutions at k = 0 for all classes with d ≥ 0 and also at
k = 1 for negative d:

B ≡ (1 − c)r
1 − (1 − c)r

exp
[

(1 − c)r
1 − (1 − c)r

]

, (10)

with r = (1− c+ cd)−1. At k = 0, Lambert-W function can
asymptotically be expanded as

W(x) =
∞∑

n=1

(−1)n−1 nn−2

(n − 1)!
xn. (11)

As discussed in ref. [1], the properties of this generic
extensivity condition, eq. (8), lead to

(1 − c)−1 = lim
N→∞

N
Ω′

Ω
, (12)

d = lim
N→∞

log Ω

(
1
N

Ω

Ω′ + c − 1
)

. (13)
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The number of micro states (Ω) can be related to the
distribution function, itself,

Ω(N) = exp

{
d

1 − c
Wk

[
(1 − c) e

1−c
c d

c d

(
ϕ cN

r

)1/d
]}

× 1
εc,d(−ϕ cN)

, (14)

where ϕ is given as

ϕ =
d

dN
Sg = Ω′

[

g(1/Ω) − 1
Ω

g′(1/Ω)
]

. (15)

2.4 Axiomatic nonextensive statistics and
hadronization processes

In the quark coalescence model, the produced hadrons can
be estimated by valence quarks and/or antiquarks multi-
plied by the coalescence coefficient Chadron and a nonlin-
ear normalization coefficient bq. The latter takes into con-
sideration the conservation of the various quantum num-
bers [32]:

NM = DM CM (i, j) bqi
Nqi

bqj
Nqj

, (16)

NB = DB CB(i, j, k) bq(i)Nq(i) bq(j)Nq(j) bq(k)Nq(k).
(17)

In obtaining these expressions, it was assumed that the
hadrons are produced in a thermal equilibrium [33] and
the spin degeneracy (Shadron) and Dhadron = 2Shadron +
1 are additional normalization factors. Straightforwardly,
one goes from nonlinear to linear hadronization processes.
The hadron number becomes directly proportional to the
quark constituents multiplied by the reaction volume [34],
for instance,

Np ∝ N3
q , (18)

NΛ|Σ ∝ N2
q Ns, (19)

NΞ ∝ Nq N2
s , (20)

NΩ ∝ N3
s . (21)

The proportionality factor and the exponents of the quark
flavors give an estimation for the extensivity parameter
d [3].

The coalescence model is proposed because:

1. it implies a special grouping of the valence quarks
forming baryons and mesons,

2. it very well describes the hadronization process in
high-energy collisions, and

3. thus constant and proportional connectivity and con-
stant connectancy can be characterized and accord-
ingly the values of c and d can be guessed.

Assuming constant connectivity, which minimizes the
possibilities of forming hadrons from a concrete number
of quarks, then from eqs. (16) and (17), the available

quark numbers (Nq) determine the number of the result-
ing hadrons,

NM ∝ 1
2

Nq, NB ∝ 1
3

Nq. (22)

Thus, the possible hadron states can be estimated as

Ω =
(

Nq

NM |B

)

, (23)

which can be re-expressed as a function of either Nq or
NM |B . Accordingly, we get c = d = 1, i.e. Boltzmann-
Gibbs extensive entropy.

There are three possibilities:

– Constant connectivity. Then eq. (22) leads to dNN |B ∝
α Nq, with α = O(2) for bosons and α = O(3) for
baryons. Hence, the maximum number of possible had-
ron states reads

Ω 
 bNq , (24)

and the statistical system can be described by exten-
sive entropy, i.e. c = d = 1.

– Constant connectancy. This leads to k ∝ Nq and ac-
cordingly,

Ω 
 N
NM|B
q . (25)

The statistical system can then be described by nonex-
tensive q-entropy, i.e. Tsallis statistics.

– Proportional connectivity which represents a depar-
ture from the main assumption of simplest confining
procedure. In this case k ∝ Nα

q leads to a super-
equipotential increase in the entropy, i.e. c = 1 and
d = 1/αs, where αs is the strong running coupling.

3 Axiomatic nonextensive partition function

At vanishing baryon chemical potential and from eq. (9),
the partition function of and axiomatic nonextensive en-
semble is given as

ln Zcl(T ) = V

NM|B∑

i

gi

∫ ∞

0

d3p

(2π)3
εc,d,r(xi), (26)

where V being the fireball volume and xi stands for the
i-th resonance dispersion relation, xi = (p2 +m2

i )
1/2, nor-

malized to temperature T .
For Fermi-Dirac and Bose-Einstein quantum statistics,

ln Z(T ) = ±V

NM|B∑

i

gi

∫ ∞

0

d3p

(2π)3
ln [1 ± εc,d,r(xi)] ,

(27)
where ± stands fermions and bosons, respectively. All
thermodynamic quantities can be derived from eq. (26)
or eq. (27).
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Fig. 1. Top panel (a) presents a comparison between lat-
tice QCD pressure (p/T 4) [35] (symbols) and the calculations
from statistics thermal models (HRG) with extensive (dashed
curve), nonextersive axiomatic (solid) and Tsallis algebra (dot-
ted curve). Bottom panel (b) depicts the same as (a) but for
the energy density (ε/T 4).

3.1 Confronting extensive and nonextensive statistics
to lattice QCD thermodynamics

Instead of the ad hoc assumption that c = 0, while as-
signing Tsallis nonextensive parameter q to d, we apply
eq. (27), which takes into consideration various possibili-
ties of extensivity and nonextensivity. The results on pres-
sure p/T 4 (top panel) and energy density ε/T 4 (bottom
panel) are depicted in fig. 1. Both thermodynamic quan-
tities are estimated at a vanishing chemical potential (re-
lated to very high center-of-mass energies), at which the
lattice QCD simulations become very reliable. Despite the
sign problem making Monte Carlo techniques no longer
applicable, μb/T ≤ 1 sets limits to the applicability of the
lattice calculations. At larger μb (comparable to NICA),
we are left with QCD-like approaches. This explains the
reason, why we limit to discussion here to reliable lattice
calculations, only.

It is obvious that the calculations from the statistical
thermal models, for instance HRG, in which the nonex-
tensivity is defined from the axiomatic entropy, reproduce
very well the lattice QCD calculations. In this approach,
the two asymptotic properties, c and d, to each of which a
scaling function is associated, are implemented. This de-
fines a generalized entropy for such strongly correlated
systems. In order to reproduce the lattice simulations,
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Fig. 2. Top panel (a): different particle ratios deduced from
axiomatic nonextensive statistics (dashed lines), eq. (27), are
compared with the experimental measurements at 200 GeV
(symbols). Bottom panel (b) shows the same but at 7.7 GeV.

values very close to unity should be assigned to both
scaling exponents c and d (solid curves). These lead to
the conclusion that the classical Boltzmann-Gibbs statis-
tics reproduces very well the lattice results. To confirm
this conclusion, we also present calculations from exten-
sive HRG (dashed curves), i.e. fully Boltzmann-Gibbs ap-
proach (c = d = 1), and found that the lattice results
are also very well reproduced (dashed curves). The results
from Tsallis statistics are depicted as dotted curves. It is
obvious that even when normalizing them to the factor 5,
the lattice calculations can not be reproduced. So far, we
conclude that the lattice QCD thermodynamics is likely
extensive.

3.2 Particle ratios from extensive and axiomatic
nonextersive statistics

Examples on different particle ratios measured at 200GeV
(top panel (a)) and at 7.7GeV (bottom panel (b))
are depicted in fig. 2. The experimental measurements
are compared with the statistical fitting from the pro-
posed axiomatic nonextensive statistics (dashed lines). At
200GeV, c = 0.975 and d = 0.965 while at 7.7GeV,
which is very compatible with NICA energies, c = 0.9912
and d = 0.945. The quality of both fittings changes
at these two respective energies; χ2/dof = 1.105 and
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χ2/dof = 7.785. It is worthwhile to notice that the dis-
crepancy with the experimental results is mainly in re-
producing strange particles. Their fugacity factors likely
play a crucial role. Also, the quark occupation factor and
the excluded-volume effects might be responsible for such
discrepancy. This will be a subject of a future study. The
resulting freezeout parameters read

– at 200GeV, Tch = 148.05MeV and μb = 23.94MeV
and

– at 7.7GeV, Tch = 145.32MeV and μb = 384.3MeV,

which are obviously very compatible with the ones de-
duced from Boltzmann-Gibbs statistics [36]. We conclude
that the resulting c and d refer to neither Boltzmann-
Gibbs- nor Tsalis-type statistics. But in order to con-
firm whether c increases and/or d reduces with the en-
ergy, a further analysis should be conducted. It seems
that at 7.7GeV, which belongs to NICA energy range,
c 
 1, while d < 1. Again, both values neither match with
Boltzmann-Gibbs nor with Tsalis statistics.

4 Conclusions

We conclude that the lattice calculations ab initio assume
extensivity and likely additivity, as well. Therefore, all
nonextensive approaches including Tsallis statistics cat-
egorically are not suitable to reproduce them. The pro-
posed axiomatic nonextensivity at c = d 
 1, i.e. exten-
sive Boltzmann-Gibbs statistics, simulates very well the
lattice QCD thermodynamics.

The particle production is likely a nonextensive pro-
cess, i.e. both c and d differ from unity. On the other
hand, this process can not be described by the very special
nonextensive Tsallis statistics. This opens a wide horizon
to analyse particle yields, ratios, fluctuations, higher-order
moments, etc. by means of this generic nonextensive ap-
proach. NICA precise measurements shall play a central
role.
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