Skip to main content
Log in

Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The natMo(\( \gamma\),xn)90, 91, 99Mo reaction cross-sections were experimentally determined for the bremsstrahlung end-point energies of 12, 14, 16, 45, 50, 55, 60 and 70MeV by activation and off-line \( \gamma\) -ray spectrometric technique and using the 20MeV electron linac (ELBE) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Pohang, Korea. The natMo(\( \gamma\),xn)88, 89, 90, 91, 99Mo reaction cross-sections as a function of photon energy were also calculated using the computer code TALYS 1.6. The flux-weighted average cross-sections were obtained from the literature data and the calculated values of TALYS based on mono-energetic photons and are found to be in general agreement with the present results. The flux-weighted average experimental and theoretical cross-sections for the natMo(\( \gamma\),xn)88, 89, 90, 91, 99Mo reactions increase with the bremsstrahlung end-point energy, which indicates the role of excitation energy. After a certain energy, the individual natMo(\( \gamma\),xn) reaction cross-sections decrease with the increase of bremsstrahlung energy due to opening of other reactions, which indicates sharing of energy in different reaction channels. The 100Mo(\( \gamma\), n) reaction cross-section is important for the production of 99Mo , which is a probable alternative to the 98Mo(n,\( \gamma\)) and 235U(n, f ) reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IAEA, Handbook on photonuclear data for applications cross-sections and spectra, IAEA TECDOC-1178 (IAEA, Vienna, 2000) available online at http://www-nds.iaea.org/publications/tecdocs/

  2. IAEA, Nuclear technology review, annex VIII: The socio-economics of nuclear applications: a perspective (IAEA, Vienna, 2004) pp. 85--94

  3. IAEA, Categorization of radioactive sources - Revision of IAEA-TECDOC-1191 and IAEA-TECDOC-1344 (IAEA, Vienna, 2003)

  4. National Council of Radiation Protection and Measurements (NCRP), Sources and magnitude of occupational and public exposures from nuclear medicine procedures, NCRP report no. 124, March 1996

  5. S. Groth, Lasting benefits: Nuclear application in health care, IAEA Bulletin, 42/1/2000, Vienna (2000)

  6. C.L. Larsson Availability and Use of Medical Isotopes in Canada, TM 2004-218, OMB no. 0704-0188 (Defense Research and Development Canada (DRDC), Ottawa, 2004)

  7. C.B. Cameron, J. Clin. Pathol. 23, 280 (1970)

    Article  Google Scholar 

  8. C. Schiepers, Diagnostic Nuclear Medicine (Springer, Berlin, 2006)

  9. H.F. Royston, J.L. Jeremy, T. Pal Buckeley, L.D. Daniel, T.E. James, A. Paulenova, J. Chem. Educ. 83, 625 (2006)

    Article  Google Scholar 

  10. G.J.R. Cook, Clin. Nucl. Med. 1, 5 (2006)

    Google Scholar 

  11. G.J.R. Cook, Br. J. Radiol. 76, S152 (2003)

    Article  Google Scholar 

  12. B. Scholten, R.M. Lambrecht, C. Michel, V.R. Hernan, S.M. Qaim, Appl. Radiat. Isot. 51, 69 (1999)

    Article  Google Scholar 

  13. P. Froment, I. Tilquin, M. Cogneau, Th. Delbar, J. Vervier, G. Ryckewaert, Nucl. Instrum. Methods Phys. Res. 493, 165 (2002)

    Article  ADS  Google Scholar 

  14. A.V. Sabelʼnikov, O.D. Maslov, L.G. Molokanova, M.V. Gustova, S.N. Dmitriev, Radiokhimiya 48, 172 (2006) or Radiochemistry 48

    Google Scholar 

  15. IAEA, Alternative technologies for $^{99m}$Tc generators, IAEA-TECDOC-852 (IAEA, Vienna, 1995) http://www-pub.iaea.org/MTCD/publications/PDF/te_852_prn.pdf

  16. IAEA, Charged particle cross-section data base for medical radioisotope production: diagnostic radioisotopes and monitor reactions, IAEA-TECDOC-1211 (IAEA, Vienna, 2001) http://www-nds.iaea.org (accessed May 2001)

  17. T. Ruth, Nature 457, 536 (2009)

    Article  ADS  Google Scholar 

  18. IAEA, Nuclear technology review, annex VIII: Production and supply of molybdenum-99, IAEA/NTR/2010 (IAEA, Vienna, 2010) pp. 150--167

  19. J.P. Gambini, P. Cabral, O. Alonso, E. Savio, S.D. Figueroa, X. Zhang, M. Lixin, L.D. Susan, P.Q. Thomas, Nucl. Med. Biol. 38, 255 (2011)

    Article  Google Scholar 

  20. M.A. Terán, M. Elena, A.L Reyes, P. Andrea, V. Marcelo, E. Patricia, P.P. Jose, S. Eduardo, Nucl. Med. Biol. 38, 279 (2011)

    Article  Google Scholar 

  21. NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011, available on-line at http://www.nndc.bnl.gov/

  22. R.B. Firestone, L.P. Ekstrom, Table of Radioactive Isotopes, Lawrence Berkeley National Laboratory, Berkeley Version 2.1 (2004) http://ie.lbl.gov/toi/index.asp

  23. E. Browne, R.B. Firestone, in Table of Radioactive Isotopes, edited by V.S. Shirley (Wiley, New York, 1986)

  24. J. Blachot, C. Fiche, Ann. Phys. Suppl. 6, 3 (1981)

    Google Scholar 

  25. P. Richards, Brookhaven National Laboratory, Report no. BNL 9601 (BNL Long Island, 1965)

  26. H. Arino, J.C. Frank, D.G. Kenneth, K.T. Alfred, US Patent3, 940, 318, 24 February 1976

  27. J. Bourges, C. Madic, G. Koehly, H. Nguyent, D. Baltes, C. Landesman, A. Simon, Nucl. Technol. 113, 204 (1996)

    Google Scholar 

  28. M.M. Rahman, S.M. Qaim, Nucl. Phys. A 435, 43 (1985)

    Article  ADS  Google Scholar 

  29. P. Reimer, V. Avrigeanu, S.V. Chuvaev, A.A. Filatenkov, T. Glodariu, A. Koning, A.J.M. Plompen, S.M. Qaim, D.L. Smith, H. Weigmann, Phys. Rev. C 71, 044617 (2005)

    Article  ADS  Google Scholar 

  30. V. Semkova, R. Nolte, EPJ Web of Conferences 66, 03077 (2014) France

    Article  Google Scholar 

  31. M.C. Lagunas-Solar, P.M. Kiefer, O.F. Carvacho, C.A. Lagunas, Y.P. Cha, Appl. Radiat. Isot. 42, 643 (1991)

    Article  Google Scholar 

  32. M.C. Lagunas-Solar, N.X. Zeng, I. Mirshad, T. Grey-Morgan, J. Am. Nucl. Soc. 74, 137 (1996)

    Google Scholar 

  33. M.C. Lagunas-Solar, Accelerator production of $^{99m}$Tc with proton beams and enriched ${}^{100}$Mo targets, IAEA-TECDOC, Vol. 1065 (IAEA, Vienna, 1999) p. 87

  34. B. Scholten, R.M. Lambrecht, M. Cogneau, H. Vera Ruiz, Appl. Radiat. Isot. 51, 69 (1999)

    Article  Google Scholar 

  35. S. Takács, Z. Szucs, F. Tárkányi, A. Hermanne, M. Sonck, J. Radioanal. Nucl. Chem. 257, 195 (2003)

    Article  Google Scholar 

  36. M.S. Uddin, M. Hagiwara, F. Tarkanyi, F. Ditroi, M. Baba, Appl. Radiat. Isot. 60, 911 (2004)

    Article  Google Scholar 

  37. M.U. Khandaker, M.S. Uddin, K.S. Kim, Y.S. Lee, G.N. Kim, Nucl. Instrum. Methods Phys. Res. B 262, 171 (2007)

    Article  ADS  Google Scholar 

  38. M.U. Khandaker, M.S. Uddin, K.S. Kim, Y.S. Lee, G.N. Kim, Nucl. Instrum. Methods Phys. Res. B 264, 201 (2007)

    Article  ADS  Google Scholar 

  39. M.S. Uddin, M. Baba, Appl. Radiat. Isot. 66, 208 (2008)

    Article  Google Scholar 

  40. O. Lebeda, M. Pruszynski, Appl. Radiat. Isot. 68, 2355 (2010)

    Article  Google Scholar 

  41. K. Gagnon, F. Bénard, M. Kovacs, T.J. Ruth, P. Schaffer, J.S. Wilson, S.A. Mc Quarrie, Nucl. Med. Biol. 38, 907 (2011)

    Article  Google Scholar 

  42. F. Tárkányi, F. Ditrói, A. Hermanne, S. Takács, A.V. Ignatyuk, Nucl. Instrum. Methods Phys. Res. B 280, 45 (2012)

    Article  ADS  Google Scholar 

  43. W.F. Titus, Phys. Rev. 115, 351 (1959)

    Article  ADS  Google Scholar 

  44. R.W. Gellie, Aust. J. Phys. 21, 765 (1968)

    Article  ADS  Google Scholar 

  45. N. Mutsuro, Y. Ohnuki, K. Sato, M. Kimura, J. Phys. Soc. Jpn. 14, 1649 (1959)

    Article  ADS  Google Scholar 

  46. B.S. Ishkhanov, I.M. Kapitonov, E.V. Lazutin, I.M. Piskarev, O.P. Shevchenko, Yad. Fiz. 11, 702 (1970) Sov. J. Nucl. Phys. 11

    Google Scholar 

  47. H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac, A. Veyssiere, Nucl. Phys. A 227, 427 (1974)

    Article  ADS  Google Scholar 

  48. D. Habs, U. Köster, Appl. Phys. B 103, 471 (2011)

    Article  ADS  Google Scholar 

  49. H. Utsunomiya, S. Goriely, T. Kondo, C. Iwamoto, H. Akimune, T. Yamagata, H. Toyokawa, H. Harada, F. Kitatani, Y.W. Lui, A.C. Larsen, M. Guttormsen, P.E. Koehler, S. Hilaire, S. Peru, M. Martini, A.J. Koning, Phys. Rev. C 88, 015805 (2013)

    Article  ADS  Google Scholar 

  50. S.F. Mughabghab, M. Divadeenam, N.E. Holden, Neutron resonance and thermal cross sections, Vol. I (Academic Press, New York, 1981).

  51. H. Naik, S.V. Suryanarayana, K.C. Jagadeesan, S.V. Thakare, P.V. Joshi, V.T. Nimje, K.C. Mittal, A. Goswami, V. Venugopal, S. Kailas, J. Radioanal. Nucl. Chem. 295, 807 (2013)

    Article  Google Scholar 

  52. Rita Crasta, H. Naik, S.V. Suryanarayana, P.M. Prajapati, K.C. Jagadisan, S.V. Thakare, S. Ganesh, V.T. Nimje, K.C. Mittal, A. Goswami, J. Radioanal. Nucl. Chem. 290, 367 (2011)

    Article  Google Scholar 

  53. H. Naik, G.N. Kim, R. Schwengner, K. Kim, M. Zaman, S.C. Yang, S.G. Shin, Y.-U. Kye, R. Massarczyk, R. John, A. Junghans, A. Wagner, A. Goswami, M.-H. Cho, Eur. Phys. J. A 52, 47 (2016)

    Article  ADS  Google Scholar 

  54. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS: comprehensive nuclear reaction modeling, in: Proceedings of the International Conference on Nuclear Data for Science and Technology-ND 2004, edited by R.C. Haight, M.B. Chadwick, T. Kawano, P. Talou, Vol. 769 (AIP, New York, 2005) pp. 1154--1159

  55. M. Erhard, A.R. Junghans, C. Nair, R. Schwengner, R. Beyer, J. Klug, K. Kosev, A. Wagner, Phys. Rev. C 81, 034319 (2010)

    Article  ADS  Google Scholar 

  56. R. Schwengner, R. Beyer, F. Donau, E. Gosse, A. Hartmann, A.R. Junghans, S. Mallian, G. Rusev, K.D. Schilling, W. Schulze, A. Wagner, Nucl. Instrum. Methods Phys. Res. A 555, 211 (2005)

    Article  ADS  Google Scholar 

  57. H. Naik, Sarbjit Singh, A. Goswami, V.K. Manchanda, G. Kim, K.S. Kim, M.W. Lee, Md. Shakilur Rahman, D. Raj, S. Ganesan, S.V. Suryanarayana, M.H. Cho, W. Namkung, Nucl. Instrum. Methods Phys. Res. B 269, 1417 (2011)

    Article  ADS  Google Scholar 

  58. C.F. Weizsacker, Z. Phys. 88, 612 (1934)

    Article  ADS  Google Scholar 

  59. E.J. Williams, Phys. Rev. 45, 729 (1934)

    Article  ADS  Google Scholar 

  60. GEANT4 Collaboration (S. Agostinelli et al.), Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  61. B. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, Nucl. Phys. A 159, 561 (1970)

    Article  ADS  Google Scholar 

  62. C. Fultz, R.L. Bramblett, J.T. Caldwell, N.A. Kerr, Phys. Rev. 127, 1273 (1962)

    Article  ADS  Google Scholar 

  63. K. Vogt, P. Mohr, M. Babilon, W. Bayer, D. Galaviz, T. Hartmann, C. Hutter, T. Rauscher, K. Sonnabend, S. Volz, A. Zilges, Nucl. Phys. A 707, 241 (2002)

    Article  ADS  Google Scholar 

  64. K.Y. Hara, H. Harada, F. Kitatani, S. Goko, S.Ya. Hohara, T. Kaihori, A. Makinaga, H. Utsunomiya, H. Toyokawa, K. Yamada, J. Nucl. Sci. Technol. 44, 938 (2007)

    Article  Google Scholar 

  65. V.V. Varlamov, B.S. Ishkhanov, V.N. Orlin, S.Yu. Troshchiev, Izv. Ross. Akad. Nauk Ser. Fiz. 74, 884 (2010)

    Google Scholar 

  66. V.Di. Napoli, A.M. Lacerenja, F. Salvetti, H.G. De Carvalho, J. Benuzzi Martins, Lett. Nuovo Cimento 1, 835 (1971)

    Article  Google Scholar 

  67. O.A. Bezshyyko, A.N. Vodin, L.O. Golinka-Bezshyyko, A.M. Dovbnya, I.N. Kadenko, A.O. Kivernyk, A.A. Kovalenko, V.A. Kushnir, A.I. Levon, V.V. Mitrochenko, S.M. Olejnik, G.E. Tuller, Bull. Russ. Acad. Sci. Phys. 75, 941 (2011)

    Article  Google Scholar 

  68. A. Fessler, A.J.M. Plompen, D.L. Smith, J.W. Meadows, Y. Ikeda, Nucl. Sci. Eng. 134, 171 (2000)

    Article  Google Scholar 

  69. D.L. Smith, Nucl. Data Sheets 123, 1 (2015)

    Article  ADS  Google Scholar 

  70. DOE solicitation titled ``molybdenum-99'' DE-FOA-0000323, 29 Apr 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Additional information

Communicated by R.K. Bhandari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Kim, G.N., Kapote Noy, R. et al. Photo-neutron reaction cross-sections for natMo in the bremsstrahlung end-point energies of 12-16 and 45-70 MeV. Eur. Phys. J. A 52, 195 (2016). https://doi.org/10.1140/epja/i2016-16195-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16195-9

Navigation