Skip to main content
Log in

Neutrino mixing in accelerated proton decays

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We discuss the inverse \(\beta\)-decay of accelerated protons in the context of neutrino flavor superpositions (mixings) in mass eigenstates. The process \( p\rightarrow n \ell^{+} \nu_{\ell}\) is kinematically allowed because the accelerating field provides the rest energy difference between initial and final states. The rate of \( p\rightarrow n\) conversions can be evaluated in either the laboratory frame (where the proton is accelerating) or the co-moving frame (where the proton is at rest and interacts with an effective thermal bath of \( \ell\) and \(\nu_{\ell}\) due to the Unruh effect). By explicit calculation, we show that the rates in the two frames disagree when taking into account neutrino mixings, because the weak interaction couples to charge eigenstates whereas gravity couples to neutrino mass eigenstates (D.V. Ahluwalia et al., arXiv:1505.04082 [hep-ph]). The contradiction could be resolved experimentally, potentially yielding new information on the origins of neutrino masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1 (2008) (arXiv:0704.1800 [hep-ph])

    Article  ADS  Google Scholar 

  2. B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) (Zh. Eksp. Teor. Fiz., 53

    ADS  Google Scholar 

  3. D.V. Ahluwalia, Mod. Phys. Lett. A 13, 2249 (1998) [hep-ph/9807267]

    Article  ADS  Google Scholar 

  4. D.V. Ahluwalia, C. Burgard, Gen. Rel. Grav. 28, 1161 (1996) [gr-qc/9603008]

    Article  ADS  Google Scholar 

  5. D.V. Ahluwalia, Gen. Rel. Grav. 29, 1491 (1997) [gr-qc/9705050]

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Chryssomalakos, D. Sudarsky, Gen. Rel. Grav. 35, 605 (2003) [gr-qc/0206030]

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Weinberg, The Quantum Theory of Fields, Vols. I, II (Cambridge University Press, 1995)

  8. D.A.T. Vanzella, G.E.A. Matsas, Phys. Rev. D 63, 014010 (2001) [hep-ph/0002010]

    Article  ADS  Google Scholar 

  9. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008) (arXiv:0710.5373 [gr-qc])

    Article  ADS  MathSciNet  Google Scholar 

  10. J.J. Bisognano, E.H. Wichmann, J. Math. Phys. 17, 303 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  11. G.L. Sewell, Ann. Phys. 141, 201 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.V. Ahluwalia, L. Labun, G. Torrieri, arXiv:1505.04082 [hep-ph]

  13. D.A.T. Vanzella, G.E.A. Matsas, Phys. Rev. Lett. 87, 151301 (2001) [gr-qc/0104030]

    Article  ADS  Google Scholar 

  14. H. Suzuki, K. Yamada, Phys. Rev. D 67, 065002 (2003) [gr-qc/0211056]

    Article  ADS  Google Scholar 

  15. S.A. Fulling, Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  16. P.C.W. Davies, J. Phys. A 8, 60 (1975)

    Article  Google Scholar 

  17. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  18. E.K. Akhmedov, J. Kopp, JHEP 04, 008 (2010)

    Article  ADS  Google Scholar 

  19. E.K. Akhmedov, J. Kopp, JHEP 10, 052 (2013) (arXiv:1001.4815 [hep-ph])

    Article  ADS  Google Scholar 

  20. M. Blasone, F. Dell'Anno, S. De Siena, F. Illuminati, EPL 106, 30002 (2014) (arXiv:1401.7793 [quant-ph])

    Article  ADS  Google Scholar 

  21. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, 1984)

  22. A.A. Sokolov, I.M. Ternov, Dokl. Akad. Nauk. SSSR 153, 1052 (1963) (Sov. Phys. Dokl. 7

    Google Scholar 

  23. J.R. Johnson, R. Prepost, D.E. Wiser, J.J. Murray, R. Schwitters, C.K. Sinclair, Nucl. Instrum. Methods 204, 261 (1983)

    Article  Google Scholar 

  24. J.S. Bell, J.M. Leinaas, Nucl. Phys. B 212, 131 (1983)

    Article  ADS  Google Scholar 

  25. A. Higuchi, G.E.A. Matsas, D. Sudarsky, Phys. Rev. D 45, 3308 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Higuchi, G.E.A. Matsas, D. Sudarsky, Phys. Rev. D 46, 3450 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  27. P. Chen, T. Tajima, Phys. Rev. Lett. 83, 256 (1999)

    Article  ADS  Google Scholar 

  28. R. Schutzhold, G. Schaller, D. Habs, Phys. Rev. Lett. 100, 091301 (2008)

    Article  ADS  Google Scholar 

  29. P. Igor, S. Daniel, arXiv:1306.6621 [quant-ph]

  30. Y. Hadad, L. Labun, J. Rafelski, N. Elkina, C. Klier, H. Ruhl, Phys. Rev. D 82, 096012 (2010) (arXiv:1005.3980 [hep-ph])

    Article  ADS  Google Scholar 

  31. A. Di Piazza, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012) (arXiv:1111.3886 [hep-ph])

    Article  ADS  Google Scholar 

  32. Camila de Almeida, Alberto Saa, Am. J. Phys. 74, 154 (2006) (arXiv:physics/0506049)

    Article  ADS  Google Scholar 

  33. G. Torrieri, arXiv:1501.00435 [gr-qc]

  34. D.G. Boulware, Ann. Phys. 124, 169 (1980)

    Article  ADS  Google Scholar 

  35. W.Y. Pauchy Hwang, S.P. Kim, Phys. Rev. D 80, 065004 (2009) (arXiv:0906.3813 [hep-th])

    Article  ADS  Google Scholar 

  36. L. Labun, J. Rafelski, Phys. Rev. D 86, 041701 (2012) (arXiv:1203.6148 [hep-ph])

    Article  ADS  Google Scholar 

  37. W. Greiner, B. Muller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Berlin, 1985) p. 594

  38. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, MA, 1995) p. 842, sect. 1.8

  39. J.S. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  40. G.V. Dunne, Eur. Phys. J. D 55, 327 (2009) (arXiv:0812.3163 [hep-th])

    Article  ADS  Google Scholar 

  41. M. Soffel, B. Muller, W. Greiner, Phys. Rev. D 22, 1935 (1980)

    Article  ADS  Google Scholar 

  42. R. Haag, N.M. Hugenholtz, M. Winnink, Commun. Math. Phys. 5, 215 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  43. G. Torrieri, H. Truran, in preparation

  44. H. Leutwyler, A.V. Smilga, Phys. Rev. D 46, 5607 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. K. Hepp, Helv. Phys. Acta 45, 237 (1972)

    Google Scholar 

  46. J. Doukas, S.Y. Lin, B.L. Hu, R.B. Mann, JHEP 11, 119 (2013) (arXiv:1307.4360)

    Article  ADS  Google Scholar 

  47. M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks et al., AIP Conf. Proc. 1507, 874 (2012)

    ADS  Google Scholar 

  48. The Extreme Light Infrastructure (ELI) project: http://www.extreme-light-infrastructure.eu/eli-home.php

  49. R. Schutzhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008) (arXiv:0807.0754 [hep-th])

    Article  ADS  MathSciNet  Google Scholar 

  50. E. Akkermans, G.V. Dunne, Phys. Rev. Lett. 108, 030401 (2012) (arXiv:1109.3489 [hep-th])

    Article  ADS  Google Scholar 

  51. M.J.A. Jansen, C. Müller, Phys. Rev. A 88, 052125 (2013) (arXiv:1309.1069 [hep-ph])

    Article  ADS  Google Scholar 

  52. A. Otto, D. Seipt, D. Blaschke, S.A. Smolyansky, B. Kämpfer, Phys. Rev. D 91, 105018 (2015) (arXiv:1503.08675 [hep-ph])

    Article  ADS  Google Scholar 

  53. N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, JHEP 05, 074 (2004) (arXiv:hep-th/0312099)

    Article  MathSciNet  Google Scholar 

  54. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan, L. Senatore, JHEP 03, 014 (2008) (arXiv:0709.0293 [hep-th])

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Weinberg, Phys. Rev. D 77, 123541 (2008) (arXiv:0804.4291 [hep-th])

    Article  ADS  MathSciNet  Google Scholar 

  56. C. Lin, L.Z. Labun, arXiv:1501.07160 [hep-th]

  57. S.V. Bolokhov, K.A. Bronnikov, S.G. Rubin, Phys. Rev. D 84, 044015 (2011) (arXiv:1011.2828 [hep-ph])

    Article  ADS  Google Scholar 

  58. A.J. Niemi, S. Slizovskiy, arXiv:1004.0212 [hep-th]

  59. RBC and UKQCD Collaborations (N.H. Christ et al.), Phys. Rev. D 88, 014508 (2013) (arXiv:1212.5931 [hep-lat])

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Torrieri.

Additional information

Communicated by B. Ananthanarayan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahluwalia, D.V., Labun, L. & Torrieri, G. Neutrino mixing in accelerated proton decays. Eur. Phys. J. A 52, 189 (2016). https://doi.org/10.1140/epja/i2016-16189-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16189-7

Navigation