Skip to main content
Log in

Statistical hadronization model analysis of hadron yields in p + Nb and Ar + KCl at SIS18 energies

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The HADES data from p + Nb collisions at a center-of-mass energy of \( \sqrt{s_{NN}} = 3.2\) GeV are analyzed employing a statistical hadronization model. The model can successfully describe the production yields of the identified hadrons \( \pi^{0}\), \( \eta\), \( \Lambda\), K 0 s, \( \omega\) with parameters \( T_{chem} = (99\pm 11)\) MeV and \( \mu_{b} = (619\pm 34)\) MeV, which fit well into the chemical freeze-out systematics found in heavy-ion collisions. In addition, we reanalyze our previous HADES data from Ar + KCl collisions at \( \sqrt{s_{NN}} = 2.6\) GeV with an updated version of the model. We address equilibration in heavy-ion collisions by testing two aspects: the description of yields and the regularity of freeze-out parameters from a statistical model fit as a function of colliding energy and system size. Despite its success, the model fails to describe the observed \( \Xi^{-}\) yields in both, p + Nb and Ar + KCl . Special emphasis is put on feed-down contributions from higher-lying resonance states as a possible explanation for the observed excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Koppe, Z. Naturforsch. A 3, 251 (1948)

    ADS  Google Scholar 

  2. P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/0304013 (2003)

  3. M. Petran, J. Letessier, V. Petracek, J. Rafelski, Phys. Rev. C 88, 034907 (2013)

    Article  ADS  Google Scholar 

  4. F. Becattini, M. Gazdzicki, A. Keranen, J. Manninen, R. Stock, Phys. Rev. C 69, 024905 (2004)

    Article  ADS  Google Scholar 

  5. J. Cleymans, H. Oeschler, K. Redlich, Phys. Rev. C 59, 1663 (1999)

    Article  ADS  Google Scholar 

  6. A.N. Tawfik, Int. J. Mod. Phys. A 29, 1430021 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Floris, Nucl. Phys. A 931, 103 (2014)

    Article  ADS  Google Scholar 

  8. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  9. J. Stachel, A. Andronic, P. Braun-Munzinger, K. Redlich, J. Phys. Conf. Ser. 509, 012019 (2014)

    Article  ADS  Google Scholar 

  10. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2016)

    Article  ADS  Google Scholar 

  11. R. Stock, Phys. Lett. B 456, 277 (1999)

    Article  ADS  Google Scholar 

  12. R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965)

    Google Scholar 

  13. E.V. Shuryak, Yad. Fiz. 16, 395 (1972)

    Google Scholar 

  14. F. Becattini, G. Passaleva, Eur. Phys. J. C 23, 551 (2002)

    Article  ADS  Google Scholar 

  15. F. Becattini, P. Castorina, J. Manninen, H. Satz, Eur. Phys. J. C 56, 493 (2008)

    Article  ADS  Google Scholar 

  16. A. Andronic, F. Beutler, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 675, 312 (2009)

    Article  ADS  Google Scholar 

  17. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    Article  ADS  Google Scholar 

  18. I. Kraus, J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 76, 064903 (2007)

    Article  ADS  Google Scholar 

  19. J. Cleymans, B. Kämpfer, P. Steinberg, S. Wheaton, J. Phys. G 30, S595 (2004)

    Article  ADS  Google Scholar 

  20. B. Kämpfer, J. Cleymans, P. Steinberg, S. Wheaton, Heavy Ion Phys. 21, 207 (2004)

    Article  Google Scholar 

  21. J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005)

    Article  ADS  Google Scholar 

  22. HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 47, 21 (2011)

    Article  ADS  Google Scholar 

  23. J. Steinheimer, M. Bleicher, J. Phys. G 43, 1, 015104 (2016)

    Article  ADS  Google Scholar 

  24. S. Wheaton, J. Cleymans, Comput. Phys. Commun. 180, 84 (2009)

    Article  ADS  Google Scholar 

  25. Particle Data Group (K. Hagiwara et al.), Phys. Rev. D 66, 010001 (2002)

    Article  Google Scholar 

  26. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  27. HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 41, 243 (2009)

    Article  ADS  Google Scholar 

  28. HADES Collaboration (M. Lorenz et al.), PoS (BORMIO2010) 038, (2010)

  29. FOPI Collaboration (K. Piasecki et al.), Phys. Rev. C 91, 054904 (2015)

    Article  ADS  Google Scholar 

  30. FOPI Collaboration (P. Gasik), arXiv:1512.06988 [nucl-ex]

  31. N. Herrmann, J.P. Wessels, T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999)

    Article  ADS  Google Scholar 

  32. W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997)

    Article  ADS  Google Scholar 

  33. FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 848, 366 (2010)

    Article  ADS  Google Scholar 

  34. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998)

    Article  ADS  Google Scholar 

  35. HADES Collaboration (H. Schuldes et al.), J. Phys. Conf. Ser. 599, 012028 (2015)

    Article  ADS  Google Scholar 

  36. HADES Collaboration (P. Tlusty), arXiv:0906.2309 (2009)

  37. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 80, 025209 (2009)

    Article  ADS  Google Scholar 

  38. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 82, 044907 (2010)

    Article  ADS  Google Scholar 

  39. HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 49, 34 (2013)

    Article  ADS  Google Scholar 

  40. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 84, 014902 (2011)

    ADS  Google Scholar 

  41. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. Lett. 103, 132301 (2009)

    Article  ADS  Google Scholar 

  42. F.D. Berg et al., Phys. Rev. Lett. 72, 977 (1994)

    Article  ADS  Google Scholar 

  43. TAPS Collaboration (R. Holzmann et al.), Phys. Rev. C 56, 2920 (1997)

    Google Scholar 

  44. O. Buss et al., Phys. Rep. 512, 1 (2012)

    Article  ADS  Google Scholar 

  45. HADES Collaboration (P. Tlusty et al.), PoS BORMIO 2012, 019 (2012)

    Google Scholar 

  46. HADES Collaboration (G. Agakishiev et al.), Phys. Lett. B 715, 304 (2012)

    Article  ADS  Google Scholar 

  47. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 88, 024904 (2013)

    Article  ADS  Google Scholar 

  48. HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 50, 81 (2014)

    Article  ADS  Google Scholar 

  49. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 90, 054906 (2014)

    Article  ADS  Google Scholar 

  50. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. Lett. 114, 212301 (2015)

    Article  ADS  Google Scholar 

  51. R.J. Glauber, G. Matthiae, Nucl. Phys. B 21, 135 (1970)

    Article  ADS  Google Scholar 

  52. J. Weil, H. van Hees, U. Mosel, Eur. Phys. J. A 48, 111 (2012)

    Article  ADS  Google Scholar 

  53. J. Weil, private communication of the corresponding omega yield in full phase space

  54. R. Averbeck, R. Holzmann, V. Metag, R.S. Simon, Phys. Rev. C 67, 024903 (2003)

    Article  ADS  Google Scholar 

  55. C. Markert, G. Torrieri, J. Rafelski, AIP Conf. Proc. 631, 533 (2002)

    Article  ADS  Google Scholar 

  56. J. Steinheimer, M. Lorenz, F. Becattini, R. Stock, M. Bleicher, arXiv:1603.02051 [nucl-th]

  57. F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)

    Article  ADS  Google Scholar 

  58. F. Li, L.W. Chen, C.M. Ko, S.H. Lee, Phys. Rev. C 85, 064902 (2012)

    Article  ADS  Google Scholar 

  59. G. Graef, J. Steinheimer, F. Li, M. Bleicher, Phys. Rev. C 90, 064909 (2014)

    Article  ADS  Google Scholar 

  60. E.E. Kolomeitsev, B. Tomasik, D.N. Voskresensky, Phys. Rev. C 86, 054909 (2012)

    Article  ADS  Google Scholar 

  61. E.L. Bratkovskaya, J. Aichelin, M. Thomere, S. Vogel, M. Bleicher, Phys. Rev. C 87, 064907 (2013)

    Article  ADS  Google Scholar 

  62. HADES Collaboration (G. Agakishiev et al.), Phys. Lett. B 742, 242 (2015)

    Article  ADS  Google Scholar 

  63. HADES Collaboration (G. Agakishiev et al.), Phys. Rev. C 85, 035203 (2012)

    ADS  Google Scholar 

  64. M. Ronniger, B.Ch. Metsch, Eur. Phys. J. A 47, 162 (2011)

    Article  ADS  Google Scholar 

  65. PANDA Collaboration (M.F.M. Lutz), arXiv:0903.3905 (2009)

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Lorenz.

Additional information

Communicated by P. Rossi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HADES Collaboration., Agakishiev, G., Arnold, O. et al. Statistical hadronization model analysis of hadron yields in p + Nb and Ar + KCl at SIS18 energies. Eur. Phys. J. A 52, 178 (2016). https://doi.org/10.1140/epja/i2016-16178-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16178-x

Navigation