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Abstract. An effective shear viscosity in central Au+Au collisions is estimated in the range of incident
energies 3.3 GeV ≤ √

sNN ≤ 39GeV. The simulations are performed within a three-fluid model employing
three different equations of state with and without the deconfinement transition. In order to estimate this
effective viscosity, we consider the entropy produced in the 3FD simulations as if it is generated within the
conventional one-fluid viscous hydrodynamics. It is found that the effective viscosity within the different
considered scenarios is very similar at the expansion stage of the collision: as a function of temperature
(T ) the viscosity-to-entropy ratio behaves as η/s ∼ 1/T 4; as a function of the net-baryon density (nB),
η/s ∼ 1/s, i.e. it is mainly determined by the density dependence of the entropy density. The above
dependences take place along the dynamical trajectories of Au+Au collisions. At the final stages of the
expansion the η/s values are ranged from ∼ 0.05 at the highest considered energies to ∼ 0.5 at the lowest
ones.

Dissipation in strongly interacting matter is an im-
portant property of the produced matter and is crucial
for understanding the dynamics of heavy-ion collisions.
Observables that are the most sensitive to the dissipa-
tion at the expansion stage of the reaction are the elliptic
flow and other anisotropic flow coefficients. This dissipa-
tion deduced from the analysis of experimental data at
the Large Hadron Collider (LHC) at CERN and at top
energies of the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory (BNL) amounts to
η/s ≈ 0.1–0.2 in terms of the viscosity-to-entropy ratio [1].
The analysis of the STAR data in the RHIC Beam Energy
Scan (BES) range

√
sNN = 7.7–200GeV [2], recently per-

formed within a hybrid model [3], indicated that the η/s
ratio remains approximately in the same range even at
lower BES-RHIC energies. This is definitely in contrast
to common expectations that at the BES-RHIC energies
the viscosity of the matter should rapidly rise because the
system spends most of its time in the hadronic phase [4].

In our recent paper [5] we found that the model of
the three-fluid dynamics (3FD) [6] equally well describes
the STAR data [2] on the momentum-integrated elliptic
flow of charged particles at energies from

√
sNN = 7.7

to 39GeV within very different scenarios characterized by
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very different equations of state (EoSs) —from a purely
hadronic EoS [7] to the EoSs involving deconfinement
transition [8], i.e. a first-order phase transition and a
smooth crossover one. We assumed that the main rea-
son of this good description is that the dissipation in the
3FD dynamics with different EoSs is very similar. How-
ever, we did not present a proof of this assumption be-
cause the 3FD model does not include viscosity in its for-
mulation. The dissipation in the 3FD model is present
through a friction interaction between participated fluids
rather than a viscosity. It is highly difficult to quantita-
tively express the 3FD dissipation in terms of the effective
viscosity, because this dissipation depends on the dynam-
ics of the collisions rather then only on the parameters
of the friction. In the present paper, in order to estimate
this dissipation in terms of an effective viscosity, we con-
sider the entropy produced in the 3FD simulations as if
it is generated within the conventional one-fluid viscous
hydrodynamics.

A three-fluid approximation [6] is a minimal way to
simulate a finite stopping power of colliding nuclei at high
incident energies. Within this approximation a generally
nonequilibrium distribution of baryon-rich matter is mod-
eled by counter-streaming baryon-rich fluids initially asso-
ciated with constituent nucleons of the projectile (p) and
target (t) nuclei. In addition, newly produced particles,
populating the midrapidity region, are associated with a
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separate net-baryon-free fluid which is called a “fireball”
fluid (f -fluid). A certain formation time τf is allowed for
the f -fluid, during which the matter of the fluid propa-
gates without interactions. The formation time is associ-
ated with a finite time of string formation. The physical
input of the present 3FD calculations is described in detail
in ref. [9].

The proper (i.e. in a local rest frame) entropy density
of a separate fluid (α) can be calculated by means of the
thermodynamic relation

sα =
1
Tα

(εα + Pα − nαμα), (1)

where, Tα, εα, Pα, nα and μα are the temperature, the
energy density, the pressure, the baryon density and the
baryon chemical potential of the α-fluid. All these quan-
tities are known from the solution of the 3FD equations.
The total entropy (S) is then calculated by integration of
the sum of these s-densities over the volume of the system

S =
∫

dV
∑
α

u0
αsα, (2)

where u0
α is the 0-component of the α-fluid 4-velocity,

which is introduced to transform the proper s-density into
a common frame of the calculation.

The main idea of estimating an effective viscosity in a
nuclear collision consists in associating the entropy pro-
duction within the 3FD simulation with the effect of the
viscous dissipation within the standard viscous hydrody-
namics.

In fact, the 3FD dissipation is directly related neither
to the shear viscosity nor to other transport coefficients,
i.e. the bulk viscosity (ζ) and thermal conductivity (κ).
The dissipation due to these transport coefficients takes
place only when gradients of the collective velocity, tem-
perature and chemical potential exist [10,11]. The 3FD
dissipation can, in principal, occur even without any gra-
dients, e.g. in two homogeneous counter-streaming media.
Though the real evolution of the nuclear collision gives
rise to such gradients. Thus, we can express the 3FD dis-
sipation in familiar terms by associating it with the shear
viscosity. The shear viscosity is chosen among other trans-
port coefficients only because the dissipation in heavy-ion
collisions is traditionally discussed in terms of this quan-
tity.

Under the assumption that only the shear viscosity
is nonzero among the transport coefficient, the standard
viscous fluid dynamics results in the following equation
for the entropy production [10,11]:

∂μsμ =
1
T

πμν∂μuν , (3)

where sμ, uμ and T are the entropy four-current, fluid
four-velocity and temperature, respectively. The stress
tensor, πμν , reads

πμν = η
(
∂μuν + ∂νuμ − uμuλ∂λuν − uνuλ∂λuμ

)

−2
3
η (gμν − uμuν) ∂λuλ (4)

0 4 8 12
t [fm/c]

0.01

0.1

1

10

〈�μν∂μuν/η〉  [1/fm2]

〈u0〉

〈T/(ħc)〉 [1/fm]

d lnS/dt  [c/fm]

√sNN = 7.7 GeV
crossover EoS

Fig. 1. Time evolution of different factors in eq. (7) at
√

sNN =
7.7 GeV within the crossover scenario.

with η being the shear viscosity. We have to put all other
coefficients, i.e. ζ and κ, to be zero because we can deter-
mine only a single quantity from a single equation.

If the thermal conductivity is zero, the heat flow also
vanishes. Then we have no other choice but to associate
the hydrodynamic velocity uμ with the baryon flow [10]
in the 3FD model

nBuμ = npu
μ
p + ntu

μ
t , (5)

where np, nt, uμ
p and uμ

t are the net-baryon densities and
4-velocities of the p- and t-fluids within the 3FD model,
respectively, and nB and uμ those quantities of the unified
baryon-rich fluid. The mean temperature, T , that is also
required by eq. (3), is defined proceeding from common
sense, i.e. it is defined as a local energy-density-weighted
temperature

T =
∑
α

Tαεα

/∑
α

εα. (6)

Integrating eq. (3) over volume, V , we arrive at

1
S

dS

dt
=

V

S

〈
1
T

πμν∂μuν

〉
≈ 〈η〉

〈s〉
1

〈T 〉〈u0〉

〈
1
η
πμν∂μuν

〉
, (7)

where 〈. . .〉 denotes averaging over the volume. Here we
also took into account that sμ = suμ, where s is the proper
entropy density, and hence S = V 〈su0〉 ≈ V 〈s〉〈u0〉. From
this equation, together with definitions (5) and (6), we
easily obtain the estimation of the η/s ratio. In order
to facilitate the numerical evaluation of terms with time
derivatives, we also used the approximation 〈πμν∂μuν〉 ≈
〈πμν〉 〈∂μuν〉.

Figure 1 illustrates the relative importance of different
factors in eq. (7). At the initial, highly nonequilibrium
stage, when the concept of the viscosity is hardly appli-
cable, all the factors reveal fast changes in time. At the
late expansion stage (t > 4 fm/c) only the gradient term
〈πμν∂μuν〉 manifests fast changes, the entropy-production
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Fig. 2. The η/s ratio as a function of temperature along the
trajectories of central Au+Au collisions at various collision en-
ergies

√
sNN within different scenarios. The gray band in all

the panels is the function (T0/T )4, where T0 = 71MeV.

factor defines the basic scale of the η/s ratio, while the
two remaining factors, 〈T 〉 and 〈u0〉, are responsible for
only relatively insignificant corrections.

The 3FD simulations of central Au+Au collisions at
energies 3.3GeV ≤ √

sNN ≤ 39GeV were performed
without freeze-out. The freeze-out in the 3FD model re-
moves the frozen out matter from the hydrodynamical
evolution [12,13]. Therefore, in order to keep all the mat-
ter in the consideration the freeze-out was turned off.

At the initial stage of the reaction, all three fluids coex-
ist in the same space-time region, thus describing a certain
nonequilibrium state of the matter. This short initial stage
is followed by a longer stage at which the p- and t-fluids
are either spatially separated or unified, while the f -fluid
still overlaps with the baryon-rich (p- and t-) fluids to a
lesser (at high energies) or grater (at lower energies) ex-
tent. Therefore, the friction between the f -fluid and the
baryon-rich fluids still causes the dissipation and hence
the entropy growth.

In fig. 2 the results on the η/s ratio are presented as
a function of the mean temperature 〈T 〉 (cf. eqs. (5)–(7))
along the dynamical trajectories of central Au+Au colli-
sions at various collision energies

√
sNN within different

scenarios based on a purely hadronic EoS [7] and those
involving the deconfinement transition [8], i.e. a first-order

phase transition and a smooth crossover one. We plot the
η/s ratio as a function of the temperature rather than time
because the temperature is a natural argument of the η/s
quantity. The mean temperature is also a function of time.
The viscosity is meaningful when nonequilibrium is weak.
Therefore, it should be analyzed at the expansion stage
of the collision following the fast highly nonequilibrium
stage. In terms of the η/s ratio of fig. 2, the expansion
stage takes place at lower temperatures up to the mini-
mum of the η/s ratio. The η/s curves are continued to
higher temperatures after the minimum only for the sake
of convenience of labeling them.

The results that manifest fluctuations exceeding the
scale of the plot are omitted. These fluctuations are a con-
sequence of the numerical calculation of the derivatives
that causes a loss of accuracy. In view of this low accu-
racy and a very approximate nature of eq. (7) itself, the
present results on the η/s ratio should be considered as an
order-of-magnitude estimation. For the sake of the graphic
representation, we apply a running-average procedure to
the results of the direct calculation in such a way that the
η/s ratio is averaged over each sequential five time steps.
Though these running-average results are not completely
smooth, they exhibit much weaker fluctuations.

At high temperatures T � 160GeV in collisions with√
sNN > 10GeV, the η/s ratio turns out to be notice-

ably smaller that the conjectured lowest bound for this
quantity 1/(4π) [14]. Even in view of the above-discussed
roughness of the present estimate, that small values η/s
should be attributed to the 3FD model itself. This is cer-
tainly a theoretical shortcoming of the model. At the final
stages of the expansion1 the η/s values are ranged from
∼ 0.05 at the highest considered energies to ∼ 0.5 at the
lowest ones.

We further focus on the qualitative properties of the
deduced η/s ratio. As seen from fig. 2, the temperature
dependence of the η/s ratio at the expansion stages of col-
lisions at various collision energies is very similar within
different scenarios. This dependence is approximately de-
scribed by 1/T 4 low, i.e. this ratio decreases with the tem-
perature rise, as is commonly expected. It is important to
emphasize that this is the T -dependence along the dy-
namical trajectories of collisions, along which the mean
net-baryon density, nB , also changes. The density depen-
dence of the η/s ratio is also very similar within different
scenarios, though it does not follow any universal low in
terms of nB . In the case of another representation, i.e.
in terms of the kinematic viscosity η/nB , it is more spec-
tacular, as is seen from fig. 3. The nB-dependence of the
kinematic viscosity along dynamical trajectories of colli-
sions approximately follows the law of 1/nB . Of course,
different numeric factors are required for different colli-
sion energies: from ∼ 2n0 at low

√
sNN to ∼ 0.5n0 at the

highest considered
√

sNN , where n0 = 0.15 fm−3 is the
normal nuclear density. Thus, we get η/s ∼ 1/s in terms
of the η/s ratio. This is in agreement with the result of

1 We avoid the term of freeze-out because the freeze-out
within the 3FD model is an extended in time process which
continues over the whole expansion stage [12,13].
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Fig. 3. The kinematic viscosity, η/nB , as a function of the net-
baryon density, nB , along the trajectories of central Au+Au
collisions at various collision energies

√
sNN within different

scenarios. The gray band in all the panels is the function
n0/nB , where n0 = 0.15 fm−3 is the normal nuclear density.

refs. [15,16], where it was found that the reduction of the
η/s ratio with the nB rise happens mostly because of s
increase.

Apparently, the similarity of the deduced effective vis-
cosity within different scenarios is the main reason why
all considered scenarios equally well reproduce the mea-
sured integrated elliptic flow of charged particles [5]. In
this respect, the estimated η/s can be considered as that
deduced from experimental data [2] by means of the 3FD
analysis. Of course, this η/s is model dependent and is not
unique.

In conclusion, we estimated the effective viscosity
in central Au+Au collisions at collision energies from√

sNN = 3.3GeV to 39GeV within different scenarios
in order to quantify the dissipation in the 3FD model.
To estimate this dissipation in terms of the effective shear
viscosity (more precisely, the η/s ratio), we considered the
entropy produced in the 3FD model as if it was generated
within the conventional one-fluid viscous hydrodynamics.

It is found that the effective viscosity within the differ-
ent considered scenarios (with and without deconfinement
transition) is very similar at the expansion stage of the col-
lision: as a function of temperature (T ), η/s ∼ 1/T 4 and

quantitatively it is very similar within different scenarios;
as a function of the net-baryon density (nB), η/s ∼ 1/s,
i.e. it is mainly determined by the density dependence of
the entropy density. The above dependences take place
along the dynamical trajectories of Au+Au collisions. In
the hadronic scenario, the reported small values of the
η/s ratio at high collision energies,

√
sNN > 10GeV,

were achieved due to an artificial enhancement [6,9] of
the friction forces estimated on the basis of experimen-
tal proton-proton cross sections [17]. This enhancement
was required to reproduce the observed baryon stopping
at high energies.

At the final stages of the expansion the η/s values are
ranged from ∼ 0.05 at the highest considered energies to ∼
0.5 at the lowest ones. This result does not contradict the
finding of ref. [3], where the average η/s over the expansion
stage values were reported, because in our case the η/s
ratio turns out to be strongly temperature dependent.
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