Skip to main content
Log in

Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Troyer, U. Wiese, Phys. Rev. Lett. 64, 170210 (2005)

    Google Scholar 

  2. D.M. Ceperley, M.H. Kalos, in Monte Carlo Methods in Statistical Physics, edited by K. Binder, 1st edition (Springer-Verlag, New York, 1979)

  3. M.H. Kalos, D. Levesque, L. Verlet, Phys. Rev. A 9, 2178 (1974)

    Article  ADS  Google Scholar 

  4. J.G. Zabolitsky, M.H. Kalos, Nucl. Phys. A 356, 114 (1981)

    Article  ADS  Google Scholar 

  5. R.C. Grimm, R.G. Storer, J. Comput. Phys. 7, 134 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.B. Anderson, J. Chem. Phys. 65, 4122 (1976)

    ADS  Google Scholar 

  7. W.M.C. Foulkes, L. Mitas, R.J. Needs, G. Rajagopal, Rev. Mod. Phys. 73, 33 (2001)

    Article  ADS  Google Scholar 

  8. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  9. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  10. P.J. Reynolds, D.M. Ceperley, B.J. Alder, W.A. Lester, J. Chem. Phys. 77, 5562 (1982)

    Article  Google Scholar 

  11. B. Tanatar, D.M. Ceperley, Phys. Rev. B 39, 5005 (1989)

    Article  ADS  Google Scholar 

  12. G. Ortiz, D.M. Ceperley, R.M. Martin, Phys. Rev. Lett. 71, 2777 (1993)

    Article  ADS  Google Scholar 

  13. S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001) and references therein

    Article  ADS  Google Scholar 

  14. J. Carlson, J. Morales jr., V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 68, 025802 (2003)

    Article  ADS  Google Scholar 

  15. E. Lusk, S.C. Pieper, R. Butler, SciDAC Rev. 17, 30 (2010)

    Google Scholar 

  16. K.E. Schmidt, S. Fantoni, Phys. Lett. B 446, 99 (1999)

    Article  ADS  Google Scholar 

  17. S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, Phys. Rev. Lett. 99, 022507 (2007)

    Article  ADS  Google Scholar 

  18. A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013)

    Article  ADS  Google Scholar 

  19. R.D. Stratonovich, Sov. Phys. Dokl. 2, 416 (1958)

    ADS  Google Scholar 

  20. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  21. G. Sugiyama, S.E. Koonin, Ann. Phys. (N.Y.) 168, 1 (1986)

    Article  ADS  Google Scholar 

  22. F.F. Assaad, in Lecture notes of the Winter School on Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, edited by J. Grotendorst, D. Marx, A. Muramatsu, Vol. 10 (Publication Series of the John von Neumann Institute for Computing, 2002) p. 99

  23. S. Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. B 55, 7464 (1997)

    Article  ADS  Google Scholar 

  24. S. Zhang, in Theoretical Methods for Strongly Correlated Electron Systems, edited by D. Sénéchal, A.-M. Tremblay, C. Bourbonnais (Springer, 2003) and references therein

  25. S. Zhang, H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003)

    Article  ADS  Google Scholar 

  26. W.A. Al-Saidi, S. Zhang, H. Krakauer, J. Chem. Phys. 124, 224101 (2006)

    Article  ADS  Google Scholar 

  27. W. Purwanto, H. Krakauer, S. Zhang, Phys. Rev. B 80, 214116 (2009)

    Article  ADS  Google Scholar 

  28. E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)

    Article  ADS  Google Scholar 

  29. S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997) and references therein

    Article  ADS  Google Scholar 

  30. K. Langanke, D.J. Dean, P.B. Radha, Y. Alhassid, S.E. Koonin, Phys. Rev. C 52, 718 (1995)

    Article  ADS  Google Scholar 

  31. J.A. White, S.E. Koonin, D.J. Dean, Phys. Rev. C 61, 034303 (2000)

    Article  ADS  Google Scholar 

  32. Y. Alhassid, L. Fang, H. Nakada, Phys. Rev. Lett. 101, 082501 (2008)

    Article  ADS  Google Scholar 

  33. K. Langanke, D.J. Dean, S.E. Koonin, P.B. Radha, Nucl. Phys. A 613, 253 (1997)

    Article  ADS  Google Scholar 

  34. P.B. Radha, D.J. Dean, S.E. Koonin, T.T.S. Kuo, J. Retamosa, P. Vogel, Phys. Rev. Lett. 76, 2642 (1996)

    Article  ADS  Google Scholar 

  35. C. Özen, K. Langanke, G. Martinez-Pinedo, D.J. Dean, Phys. Rev. C 75, 064307 (2007)

    Article  ADS  Google Scholar 

  36. K. Langanke, Nucl. Phys. A 778, 233 (2006)

    Article  ADS  Google Scholar 

  37. C. Özen, Y. Alhassid, H. Nakada, Phys. Rev. C 91, 034329 (2015)

    Article  ADS  Google Scholar 

  38. Y. Alhassid, M. Bonett-Matiz, S. Liu, H. Nakada, Phys. Rev. C 92, 024307 (2015)

    Article  ADS  Google Scholar 

  39. G.H. Lang, C.W. Johnson, S.E. Koonin, W.E. Ormand, Phys. Rev. C 48, 1518 (1993)

    Article  ADS  Google Scholar 

  40. Y. Alhassid, D.J. Dean, S.E. Koonin, G. Lang, W.E. Ormand, Phys. Rev. Lett. 72, 613 (1994)

    Article  ADS  Google Scholar 

  41. G. Puddu, Eur. Phys. J. A 9, 171 (2000)

    Article  ADS  Google Scholar 

  42. G. Puddu, Phys. Rev. C 67, 051304 (2003)

    Article  ADS  Google Scholar 

  43. G. Puddu, Eur. Phys. J. A 21, 227 (2004)

    Article  ADS  Google Scholar 

  44. G. Puddu, Acta Phys. Pol. B 35, 2121 (2004)

    ADS  Google Scholar 

  45. M. Honma, T. Mizusaki, T. Otsuka, Phys. Rev. Lett. 77, 3315 (1996)

    Article  ADS  Google Scholar 

  46. N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma, T. Otsuka, Prog. Theor. Exp. Phys. 2012, 01A205 (2012) and references therein

    Article  Google Scholar 

  47. T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu, Y. Utsuno, Prog. Part. Nucl. Phys. 47, 319 (2001)

    Article  ADS  Google Scholar 

  48. T. Mizusaki, T. Otsuka, Y. Utsuno, M. Honma, T. Sebe, Phys. Rev. C 59, R1846 (1999)

    Article  ADS  Google Scholar 

  49. T. Otsuka, Y. Utsuno, T. Mizusaki, M. Honma, Nucl. Phys. A 682, 155 (2001)

    Article  ADS  Google Scholar 

  50. L. Liu, T. Otsuka, N. Shimizu, Y. Utsuno, R. Roth, Phys. Rev C 86, 014302 (2012)

    Article  ADS  Google Scholar 

  51. J. Bonnard, O. Juillet, Phys. Rev. Lett. 111, 012502 (2013)

    Article  ADS  Google Scholar 

  52. H.F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959)

    Article  MathSciNet  Google Scholar 

  53. M. Suzuki, Commun. Math. Phys. 51, 183 (1976)

    Article  ADS  Google Scholar 

  54. S. Zhang, in Emergent Phenomena in Correlated Matter: Modeling and Simulation, edited by E. Pavarini, E. Koch, U. Schollwöck, Vol. 3 (2013) http://www.cond-mat.de/events/correll13 (OpenAccess Book)

  55. J. Bonnard, O. Juillet, to be published in J. Phys.: Conf. Ser

  56. C.W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983)

  57. F. Villars, in Proceedings of the International School of Physics “Enrico Fermi”, Course XXXVI, Many-body Description of Nuclear Structure and Reactions, edited by C. Bloch (Academic Press, New York, 1966)

  58. A. Messiah, Quantum Mechanics, Vol. 2 (Dunod, Paris, 2003)

  59. H. Shi, C.A. Jiménez-Hoyos, R. Rodríguez-Guzmán, G.E. Scuseria, S. Zhang, Phys. Rev. B 89, 125129 (2014)

    Article  ADS  Google Scholar 

  60. H. Shi, S. Zhang, Phys. Rev. B 88, 125132 (2013)

    Article  ADS  Google Scholar 

  61. K.W. Schmid, Prog. Part. Nucl. Phys. 52, 565 (2013) and references therein

    Article  ADS  Google Scholar 

  62. J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, Mass., 1986)

  63. B.H. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984)

    Article  ADS  Google Scholar 

  64. B.A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001)

    Article  ADS  Google Scholar 

  65. M. Pervin, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 76, 064319 (2007)

    Article  ADS  Google Scholar 

  66. M.C. Buonaura, S. Sorella, Phys. Rev. B 57, 11446 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bonnard.

Additional information

Communicated by M. Hjorth-Jensen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnard, J., Juillet, O. Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model. Eur. Phys. J. A 52, 110 (2016). https://doi.org/10.1140/epja/i2016-16110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16110-6

Keywords

Navigation