Skip to main content
Log in

The nuclear physics of the hydrogen burning in the Sun

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Underground nuclear astrophysics focuses its efforts towards a deeper knowledge of the nuclear reactions that rule stellar evolution processes and enable the synthesis of the elements of the periodic table. Deep underground in the Gran Sasso laboratory, the cross-sections of the key reactions of the hydrogen burning have been measured right down to the energies of astrophysical interest. The main results obtained by the LUNA Collaboration are reviewed, and their contributions to the solution of the solar neutrino problem and to the age of the globular cluster are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Broggini et al., Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)

    Article  ADS  Google Scholar 

  2. H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)

    Article  ADS  Google Scholar 

  3. J.N. Bahcall, M.H. Pinsonneault, Rev. Mod. Phys. 64, 885 (1992)

    Article  ADS  Google Scholar 

  4. J.N. Bahcall, A.M. Serenelli, S. Basu, Astrophys. J. 621, L85 (2005)

    Article  ADS  Google Scholar 

  5. S. Basu, H.M. Antia, Phys. Rep. 457, 217 (2008)

    Article  ADS  Google Scholar 

  6. Borexino Collaboration, Nature 512, 383 (2014) DOI:10.1038/nature13702

    Article  ADS  Google Scholar 

  7. E. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)

    Article  ADS  Google Scholar 

  8. J.N. Bahcall, M.H. Pinsonneault, Phys. Rev. Lett. 92, 121301 (2004)

    Article  ADS  Google Scholar 

  9. B. Aharmim et al., Phys. Rev. C 72, 055502 (2005)

    Article  ADS  Google Scholar 

  10. J. Hosaka et al., Phys. Rev. D 73, 112001 (2006)

    Article  ADS  Google Scholar 

  11. L. Ludhova, Experimental data on solar neutrinos, contribution to this Topical Issue

  12. A.M. Serenelli et al., Astrophys. J. 705, L123 (2009)

    Article  ADS  Google Scholar 

  13. MACRO Collaboration, Phys. Lett. B 249, 149 (1990)

    Article  Google Scholar 

  14. V. Castellani, S. Degl’Innocenti, G. Fiorentini, Astron. Astrophys. 271, 601 (1993)

    ADS  Google Scholar 

  15. M.R. Dwarakanath, H. Winkler, Phys. Rev. C 4, 1532 (1971)

    Article  ADS  Google Scholar 

  16. M.R. Dwarakanath, Phys. Rev. C 9, 805 (1974)

    Article  ADS  Google Scholar 

  17. W.A. Fowler, Nature 238, 24 (1972)

    Article  ADS  Google Scholar 

  18. V.N. Fetisov, Y.S. Kopysov, Nucl. Phys. A 239, 511 (1975)

    Article  ADS  Google Scholar 

  19. U. Greife et al., Nucl. Instrum. Methods Phys. Res. A 350, 327 (1994)

    Article  ADS  Google Scholar 

  20. M. Junker et al., Phys. Rev. C 57, 2700 (1998)

    Article  ADS  Google Scholar 

  21. R. Bonetti et al., Phys. Rev. Lett. 82, 5205 (1999)

    Article  ADS  Google Scholar 

  22. C. Arpesella et al., Phys. Lett. B 389, 452 (1996)

    Article  ADS  Google Scholar 

  23. Krauss et al., Nucl. Phys. A 467, 273 (1987)

    Article  ADS  Google Scholar 

  24. T. Itahaschi et al., Nucl. Phys. A 718, 466c (2003)

    Article  ADS  Google Scholar 

  25. D. Tilley et al., Nucl. Phys. A 708, 3 (2002)

    Article  ADS  Google Scholar 

  26. J. Osborne et al., Phys. Rev. Lett. 48, 1664 (1982)

    Article  ADS  Google Scholar 

  27. H. Krawinkel et al., Z. Phys. A 304, 307 (1982)

    Article  ADS  Google Scholar 

  28. H. Holmgren, R. Johnston, Phys. Rev. 113, 1556 (1959)

    Article  ADS  Google Scholar 

  29. P. Parker, R. Kavanagh, Phys. Rev. 131, 2578 (1963)

    Article  ADS  Google Scholar 

  30. K. Nagatani, M.R. Dwarakanath, D. Ashery, Nucl. Phys. A 128, 325 (1969)

    Article  ADS  Google Scholar 

  31. Alexander et al., Nucl. Phys. A 427, 526 (1984)

    Article  ADS  Google Scholar 

  32. M. Hilgemeier et al., Z. Phys. A 329, 243 (1988)

    ADS  Google Scholar 

  33. A. Kontos et al., Phys. Rev. C 87, 065804 (2013)

    Article  ADS  Google Scholar 

  34. R.G.H. Robertson et al., Phys. Rev. C 27, 11 (1983)

    Article  ADS  Google Scholar 

  35. H. Volk et al., Z. Phys. A 310, 91 (1983)

    Article  ADS  Google Scholar 

  36. B.S. Nara Singh, M. Hass, Y. Nir-El, G. Haquin, Phys. Rev. Lett. 93, 262503 (2004)

    Article  ADS  Google Scholar 

  37. M. Carmona-Gallardo et al., Phys. Rev. C 86, 032801 (2012)

    Article  ADS  Google Scholar 

  38. C. Bordeanu et al., Nucl. Phys. 908, 1 (2013)

    Article  Google Scholar 

  39. T.A.D. Brown et al., Phys. Rev. C 76, 055801 (2007)

    Article  ADS  Google Scholar 

  40. M. Nessin, T.H. Kruse, K.E. Eklund, Phys. Rev. 125, 639 (1962)

    Article  ADS  Google Scholar 

  41. S. Burles, K.M. Nollett, J.W. Truran, M.S. Turner, Phys. Rev. Lett. 82, 4176 (1999)

    Article  ADS  Google Scholar 

  42. P. Serpico, S. Esposito, F. Iocco, G. Mangano, G. Miele, O. Pisanti, JCAP 12, 010 (2004)

    Article  ADS  Google Scholar 

  43. A. Formicola et al., Nucl. Instrum. Methods Phys. Res. A 507, 609 (2003)

    Article  ADS  Google Scholar 

  44. H. Costantini et al., Nucl. Phys. A 814, 144 (2008)

    Article  ADS  Google Scholar 

  45. F. Confortola et al., Phys. Rew. C 75, 065803 (2007)

    Article  ADS  Google Scholar 

  46. C. Casella et al., Nucl. Instrum. Methods Phys. Res. A 489, 160 (2002)

    Article  ADS  Google Scholar 

  47. A. Caciolli et al., Eur. Phys. J. A 39, 179 (2009)

    Article  ADS  Google Scholar 

  48. A. Best et al., Eur. Phys. J. A 51, 72 (2016) contribution to this Topical Issue

    Article  Google Scholar 

  49. D. Bemmerer et al., Phys. Rev. Lett. 97, 122502 (2006)

    Article  ADS  Google Scholar 

  50. T.A. Tombrello, P.D. Parker, Phys. Rev. A 131, 2582 (1963)

    Article  ADS  Google Scholar 

  51. B.T. Kim, T. Izumoto, K. Nagatani, Phys. Rev. C 23, 33 (1981)

    Article  ADS  Google Scholar 

  52. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  53. M.H. Mendenhall, R.A. Weller, Nucl. Instrum. Methods B 227, 420 (2005)

    Article  ADS  Google Scholar 

  54. C. Arpesella et al., Appl. Radiat. Isot. 47, 991 (1996)

    Article  Google Scholar 

  55. G. Gyurky et al., Phys. Rev. C 75, 035805 (2007)

    Article  ADS  Google Scholar 

  56. H. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327, 461 (1987)

    ADS  Google Scholar 

  57. P. Prati et al., Z. Phys. A 621, 452 (1997)

    Google Scholar 

  58. R.J. deBoer et al., Phys. Rev. C 90, 035804 (2014)

    Article  ADS  Google Scholar 

  59. A. Di Leva et al., Phys. Rev. Lett. 102, 232502 (2009)

    Article  ADS  Google Scholar 

  60. A. Formicola et al., Phys. Lett. B 591, 61 (2004)

    Article  ADS  Google Scholar 

  61. G. Imbriani et al., Eur. Phys. J. A 25, 455 (2005)

    Article  ADS  Google Scholar 

  62. A. Lemut et al., Phys. Lett. B 634, 483 (2006)

    Article  ADS  Google Scholar 

  63. D. Bemmerer et al., Nucl. Phys. A 779, 297 (2006)

    Article  ADS  Google Scholar 

  64. M. Marta et al., Phys. Rev. C 78, 022802(R) (2008)

    Article  ADS  Google Scholar 

  65. R.C. Runkle et al., Phys. Rev. Lett. 94, 082503 (2005)

    Article  ADS  Google Scholar 

  66. P.F. Bertone et al., Phys. Rev. Lett. 87, 152501 (2001)

    Article  ADS  Google Scholar 

  67. A.M. Mukhamedzhanov et al., Phys. Rev. C 67, 065804 (2003)

    Article  ADS  Google Scholar 

  68. S.O. Nelson et al., Phys. Rev. C 68, 065804 (2003)

    Article  ADS  Google Scholar 

  69. D. Schurmann et al., Phys. Rev. C 77, 055803 (2008)

    Article  ADS  Google Scholar 

  70. K. Yamada et al., Phys. Lett. B 579, 265 (2004)

    Article  ADS  Google Scholar 

  71. U. Schröder et al., Nucl. Phys. A 467, 240 (1987)

    Article  ADS  Google Scholar 

  72. C. Angulo, P. Descouvemont, Nucl. Phys. A 690, 755 (2001)

    Article  ADS  Google Scholar 

  73. G. Imbriani et al., Astron. Astrophys. 420, 625 (2004)

    Article  ADS  Google Scholar 

  74. S. Deg’Innocenti, astro-ph/0312559

  75. R.E. Azuma et al., Phys. Rev. C 81, 045805 (2010)

    Article  ADS  Google Scholar 

  76. A. Serenelli, C. Pena-Garay, W.C. Haxton, Phys. Rev. D 87, 043001 (2013)

    Article  ADS  Google Scholar 

  77. W.C. Haxton, A.M. Serenelli, Astrophys. J. 687, 678 (2008)

    Article  ADS  Google Scholar 

  78. N. Grevesse, A.J. Sauval, Space Sci. Rev. (1998)

  79. A. Serenelli, Alive and well: A short review about standard solar models, contribution to this Topical Issue, arXiv:1601.07179

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Formicola.

Additional information

Communicated by C. Broggini

The Luna Collaboration dedicates this paper to the memory of Prof. Roberto Bonetti and Dr. Alberto Lemut. We deeply miss their help and advice, and their friendship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formicola, A., Corvisiero, P. & Gervino, G. The nuclear physics of the hydrogen burning in the Sun. Eur. Phys. J. A 52, 73 (2016). https://doi.org/10.1140/epja/i2016-16073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16073-6

Keywords

Navigation