Skip to main content
Log in

Revealing hidden regularities with a general approach to fission

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Selected aspects of a general approach to nuclear fission are described with the focus on the possible benefit of meeting the increasing need of nuclear data for the existing and future emerging nuclear applications. The most prominent features of this approach are the evolution of quantum-mechanical wave functions in systems with complex shape, memory effects in the dynamics of stochastic processes, the influence of the Second Law of thermodynamics on the evolution of open systems in terms of statistical mechanics, and the topological properties of a continuous function in multi-dimensional space. It is demonstrated that this approach allows reproducing the measured fission barriers and the observed properties of the fission fragments and prompt neutrons. Our approach is based on sound physical concepts, as demonstrated by the fact that practically all the parameters have a physical meaning, and reveals a high degree of regularity in the fission observables. Therefore, we expect a good predictive power within the region extending from Po isotopes to Sg isotopes where the model parameters have been adjusted. Our approach can be extended to other regions provided that there is enough empirical information available that allows determining appropriate values of the model parameters. Possibilities for combining this general approach with microscopic models are suggested. These are supposed to enhance the predictive power of the general approach and to help improving or adjusting the microscopic models. This could be a way to overcome the present difficulties for producing evaluations with the required accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Möller, D.G. Madland, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001)

    Article  ADS  Google Scholar 

  2. T. Asano, T. Wada, M. Ohta, T. Ichikawa, S. Yamaji, H. Nakahara, J. Nucl. Radioch. Sc. 5, 1 (2004)

    Article  Google Scholar 

  3. T. Asano, T. Wada, M. Ohta, S. Yamaji, H. Nakahara, J. Nucl. Radioch. Sc. 7, 7 (2006)

    Article  Google Scholar 

  4. J. Randrup, P. Möller, A.J. Sierk, Phys. Rev. C 84, 034613 (2011)

    Article  ADS  Google Scholar 

  5. P. Möller, J. Randrup, A.J. Sierk, Phys. Rev. C 85, 024306 (2012)

    Article  ADS  Google Scholar 

  6. Y. Aritomo, S. Chiba, Phys. Rev. C 88, 044614 (2013)

    Article  ADS  Google Scholar 

  7. Y. Aritomo, S. Chiba, F. Ivanyuk, Phys. Rev. C 90, 054609 (2014)

    Article  ADS  Google Scholar 

  8. H. Goutte, J.F. Berger, P. Casoli, D. Gogny, Phys. Rev. C 71, 024316 (2005)

    Article  ADS  Google Scholar 

  9. C. Simenel, A.S. Umar, Phys. Rev. C 89, 031601 (2014)

    Article  ADS  Google Scholar 

  10. M. Mirea, L. Tassangot, C. Stephan, C.O. Bacri, Nucl. Phys. A 735, 21 (2004)

    Article  ADS  Google Scholar 

  11. R. Bernard, H. Goutte, D. Gogny, W. Younes, Phys. Rev. C 84, 044308 (2011)

    Article  ADS  Google Scholar 

  12. H. Goutte, contribution to this conference

  13. Compilation and evaluation of fission yield nuclear data, TECDOC-1168, IAEA, Vienna, 2000

  14. Fission-product-yield data for the transmutation of minor actinide nuclear waste, STI/PUB/1286 (IAEA, Vienna, 2008)

  15. R. Vogt, J. Randrup, Phys. Rev. C 84, 044621 (2011)

    Article  ADS  Google Scholar 

  16. R. Vogt, J. Randrup, D.A. Brown, M.A. Descalle, W.E. Ormand, Phys. Rev. C 85, 024608 (2012)

    Article  ADS  Google Scholar 

  17. J.P. Lestone, Nucl. Data Sheets 112, 3120 (2011)

    Article  ADS  Google Scholar 

  18. P. Talou, T. Kawano, I. Stetcu, R. Vogt, J. Randrup, Nucl. Data Sheets 118, 227 (2014)

    Article  ADS  Google Scholar 

  19. K.-H. Schmidt, S. Steinhäuser, C. Böckstiegel, A. Grewe, A. Heinz, A.R. Junghans, J. Benlliure, H.-G. Clerc, M. de Jong, J. Müller, M. Pfützner, B. Voss, Nucl. Phys. A 665, 221 (2000)

    Article  ADS  Google Scholar 

  20. C. Böckstiegel, S. Steinhäuser, K.-H. Schmidt, H.-G. Clerc, A. Grewe, A. Heinz, M. de Jong, A.R. Junghans, J. Müller, B. Voss, Nucl. Phys. A 802, 12 (2008)

    Article  ADS  Google Scholar 

  21. M. Caamano, F. Rejmund, K.-H. Schmidt, J. Phys. G: Nucl. Part. Phys. 38, 035101 (2011)

    Article  ADS  Google Scholar 

  22. U. Mosel, H.W. Schmitt, Phys. Rev. C 4, 2185 (1971)

    Article  ADS  Google Scholar 

  23. W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 601, 141 (1996)

    Article  ADS  Google Scholar 

  24. K.-H. Schmidt, A. Kelic, M.V. Ricciardi, EPL 83, 32001 (2008)

    Article  ADS  Google Scholar 

  25. K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)

    Article  ADS  Google Scholar 

  26. K.-H. Schmidt, B. Jurado, Ch. Amouroux, General description of fission observables, JEFF Report 24, NEA/DB/DOC(2014)1, Data Bank of the Nuclear Energy Agency of the OECD, 2014

  27. A. Kelic, K.-H. Schmidt, Phys. Lett. B 634, 362 (2006)

    Article  ADS  Google Scholar 

  28. V.V. Pashkevich, Nucl. Phys. A 169, 175 (1971)

    Article  Google Scholar 

  29. U. Brosa, S. Grossmann, A. Mueller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  30. J. Katakura, A systematics of fission product mass yields with 5 Gaussian function, JAERI Research 2003-004 (2003), Japan Atomic Energy Research Institute (JAERI)

  31. D.M. Gorodisskiy, S.I. Mulgin, V.N. Okilovich, A.Ya. Rusanov, S.V. Zhdanov, Phys. Lett. B 548, 45 (2002)

    Article  ADS  Google Scholar 

  32. U. Brosa, H.-H. Knitter, Tie-shuan Fan, Ju-min Hu, Shang-lian Bao, Phys. Rev. C 59, 767 (1999)

    Article  ADS  Google Scholar 

  33. M.C. Dujvestijn, A.J. Koning, F.-J. Hambsch, Phys. Rev. C 64, 014607 (2001)

    Article  ADS  Google Scholar 

  34. Data base of the OECD Nuclear Energy Agency, http://www.oecd-nea.org/janis/nea_database.html

  35. B. Jurado, K.-H. Schmidt, J. Phys. G: Nucl. Part. Phys. 42, 055101 (2015)

    Article  ADS  Google Scholar 

  36. G. Royer, C. Bonilla, J. Radioanal. Nucl. Chem. 272, 237 (2007)

    Article  Google Scholar 

  37. A. Dobrowolski, K. Pomorski, J. Bartel, Phys. Rev. C 75, 024613 (2007)

    Article  ADS  Google Scholar 

  38. P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, S. Aberg, Phys. Rev. C 79, 064304 (2009)

    Article  ADS  Google Scholar 

  39. M. Kowal, P. Jachimowicz, A. Sobiczewski, Phys. Rev. C 82, 014303 (2010)

    Article  ADS  Google Scholar 

  40. M. Mirea, L. Tassan-Got, Cent. Eur. J. Phys. 9, 116 (2011)

    Google Scholar 

  41. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 85, 034305 (2012)

    Article  ADS  Google Scholar 

  42. M. Kowal, J. Skalski, Phys. Rev. C 85, 061302 (2012)

    Article  ADS  Google Scholar 

  43. H. Abusara, A.V. Afanasjev, P. Ring, Phys. Rev. C 85, 024314 (2012)

    Article  ADS  Google Scholar 

  44. Bing-Nan Lu, En-Guang Zhao, Shan-Gui Zhou, Phys. Rev. C 85, 011301 (2012)

    Article  ADS  Google Scholar 

  45. J.-P. Delaroche, M. Girod, H. Goutte, J. Libert, Nucl. Phys. A 771, 103 (2006)

    Article  ADS  Google Scholar 

  46. S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C 75, 064312 (2007)

    Article  ADS  Google Scholar 

  47. F. Minato, K. Hagino, Phys. Rev. C 77, 044308 (2008)

    Article  ADS  Google Scholar 

  48. S. Goriely, S. Hilaire, A.J. Koning, M. Sin, R. Capote, Phys. Rev. C 79, 024612 (2009)

    Article  ADS  Google Scholar 

  49. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302 (2013)

    Article  ADS  Google Scholar 

  50. F.A. Ivanyuk, K. Pomorski, Phys. Rev. C 79, 054327 (2009)

    Article  ADS  Google Scholar 

  51. A.V. Karpov, A. Kelic, K.-H. Schmidt, J. Phys. G: Nucl. Part. Phys. 35, 035104 (2008)

    Article  ADS  Google Scholar 

  52. W.D. Myers, W.J. Swiatecki, Phys. Rev. C 60, 014606 (1999)

    Article  ADS  Google Scholar 

  53. S. Bjoernholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980)

    Article  ADS  Google Scholar 

  54. M.G. Itkis, N.A. Kondrat’ev, S.I. Mul’gin, V.N. Okolovich, A.Ya. Rusanov, G.N. Smirenkin, Sov. J. Nucl. Phys. 52, 601 (1990)

    Google Scholar 

  55. A.N. Andreyev, J. Elseviers, M. Huyse, P. Van Duppen, S. Antalic, A. Barzakh, N. Bree, T.E. Cocolios, V.F. Comas, J. Diriken, D. Fedorov, V. Fedosseev, S. Franchoo, J.A. Heredia, O. Ivanov, U. Koester, B.A. Marsh, K. Nishio, R.D. Page, N. Patronis, M. Seliverstov, I. Tsekhanovich, P. Van den Bergh, J. Van De Walle, M. Venhart, S. Vermote, M. Veselsky, C. Wagemans, T. Ichikawa, A. Iwamoto, P. Moeller, A.J. Sierk, Phys. Rev. Lett. 105, 252502 (2010)

    Article  ADS  Google Scholar 

  56. K.-H. Schmidt, B. Jurado, EPJ Web of Conferences 62, 06001 (2013)

    Article  Google Scholar 

  57. S.I. Mulgin, K.-H. Schmidt, A. Grewe, S.V. Zhdanov, Nucl. Phys. A 640, 375 (1998)

    Article  ADS  Google Scholar 

  58. E. Wigner, Trans. Faraday Sot. 34, Part 1, 29 (1938)

    Google Scholar 

  59. U. Mosel, H.W. Schmitt, Nucl. Phys. A 165, 73 (1971)

    Article  ADS  Google Scholar 

  60. M.G. Itkis, V.N. Okolovich, A.Ya. Rusanov, G.N. Smirenkin, Z. Phys. A 320, 433 (1985)

    Article  ADS  Google Scholar 

  61. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  62. W. Nörenberg, Unified theory of low-energy fission and fission models, Proc. Symp. Phys. Chem. Fission, Rochester 1973, IAEA Vienna, Vol. 1 (1974), p. 547

  63. Yu.Ts. Oganessian, Yu.A. Lazarev, Heavy ions and nuclear fission, in Treatise on Heavy Ion Science, Vol. 4, edited by D.A. Bromley (Plenum Press, New York, 1985) p. 1

  64. G.D. Adeev, V.V. Pashkevich, Nucl. Phys. A 502, 405c (1989)

    Article  ADS  Google Scholar 

  65. A.V. Karpov, P.N. Nadtochy, D.V. Vanin, G.D. Adeev, Phys. Rev. C 63, 054610 (2001)

    Article  ADS  Google Scholar 

  66. H. Nifenecker, J. Phys. Lett. 41, 47 (1980)

    Article  Google Scholar 

  67. M. Asghar, Z. Phys. A 296, 79 (1980)

    Article  ADS  Google Scholar 

  68. W.D. Myers, G. Manzouranis, J. Randrup, Phys. Lett. B 98, 1 (1981)

    Article  ADS  Google Scholar 

  69. A.V. Karpov, G.D. Adeev, Eur. Phys. J. A 14, 169 (2002)

    Article  ADS  Google Scholar 

  70. A.Ya. Rusanov, M.G. Itkis, V.N. Oklovich, Phys. At. Nucl. 60, 683 (1997)

    Google Scholar 

  71. V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968)

    Article  ADS  Google Scholar 

  72. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972)

    Article  ADS  Google Scholar 

  73. V.M. Strutinsky, A.G. Magner, S.R. Ofengenden, T. Doessing, Z. Phys. A 283, 269 (1977)

    Article  ADS  Google Scholar 

  74. I. Ragnarsson, R.K. Sheline, Phys. Scr. 29, 385 (1984)

    Article  ADS  Google Scholar 

  75. K.-H. Schmidt, B. Jurado, Phys. Rev. C 86, 044322 (2012)

    Article  ADS  Google Scholar 

  76. T. von Egidy, D. Bucurescu, Phys. Rev. C 80, 054310 (2009)

    Article  ADS  Google Scholar 

  77. M. Asghar, R.W. Hasse, J. Phys. Coll. 45, C6 (1984)

    Google Scholar 

  78. T.R. England, B.F. Rider, Evaluation and compilation of fission product yields, ENDF-349, LA-UR-94-3106, Los Alamos National Laboratory (1994), available from http://t2.lanl.gov/publications/yields/apxA.txt

  79. E.K. Hulet, J.F. Wild, R.J. Dougan, R.W. Lougheed, J.H. Landrum, A.D. Dougan, P.A. Baisden, C.M. Henderson, R.J. Dupzyk, Phys. Rev. C 40, 770 (1989)

    Article  ADS  Google Scholar 

  80. H.J. Krappe, Int. J. Mod. Phys. E 16, 396 (2007)

    Article  ADS  Google Scholar 

  81. W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 612, 249 (1997)

    Article  ADS  Google Scholar 

  82. D.H. Gross, Entropy 6, 158 (2004) (Special Issue Quantum Limits to the Second Law of Thermodynamics)

    Article  ADS  Google Scholar 

  83. M. Guttormsen, R. Chankova, M. Hjorth-Jensen, J. Rekstad, S. Siem, A. Schiller, D.J. Dean, Phys. Rev. C 68, 034311 (2003)

    Article  ADS  Google Scholar 

  84. A. Schiller, A. Bjerve, M. Guttormsen, M. Hjorth-Jensen, F. Ingebretsen, E. Melby, S. Messelt, J. Rekstad, S. Siem, S.W. Odegard, Phys. Rev. C 63, 021306 (2001)

    Article  ADS  Google Scholar 

  85. U. Agvaanluvsan, A. Schiller, J.A. Becker, L.A. Bernstein, P.E. Garrett, M. Guttormsen, G.E. Mitchell, J. Rekstad, S. Siem, A. Voinov, W. Younes, Phys. Rev. C 70, 054611 (2004)

    Article  ADS  Google Scholar 

  86. A. Bürger, A.C. Larsen, S. Hilaire, M. Guttormsen, S. Harissopulos, M. Kmiecik, T. Konstantinopoulos, M. Krticka, A. Lagoyannis, T. Loennroth, K. Mazurek, M. Norrby, H.T. Nyhus, G. Perdikakis, S. Siem, A. Spyrou, N.U.H. Syed, Phys. Rev. C 85, 064328 (2012)

    Article  ADS  Google Scholar 

  87. A.C. Larsen, M. Guttormsen, R. Chankova, F. Ingebretsen, T. Loennroth, S. Messelt, J. Rekstad, A. Schiller, S. Siem, N.U.H. Syed, A. Voinov, Phys. Rev. C 76, 044303 (2007)

    Article  ADS  Google Scholar 

  88. N.U.H. Syed, A.C. Larsen, A. Bürger, M. Guttormsen, S. Harissopulos, M. Kmiecik, T. Konstantinopoulos, M. Krticka, A. Lagoyannis, T. Lnnroth, K. Mazurek, M. Norby, H.T. Nyhus, G. Perdikakis, S. Siem, A. Spyrou, Phys. Rev. C 80, 044309 (2009)

    Article  ADS  Google Scholar 

  89. M. Guttormsen, A.C. Larsen, A. Bürger, A. Goergen, S. Harissopulos, M. Kmiecik, T. Konstantinopoulos, M. Krticka, A. Lagoyannis, T. Loennroth, K. Mazurek, M. Norrby, H.T. Nyhus, G. Perdikakis, A. Schiller, S. Siem, A. Spyrou, N.U.H. Syed, H.K. Toft, G.M. Tveten, A. Voinov, Phys. Rev. C 83, 014312 (2011)

    Article  ADS  Google Scholar 

  90. A.C. Larsen, R. Chankova, M. Guttormsen, F. Ingebretsen, S. Messelt, J. Rekstad, S. Siem, N.U.H. Syed, S.W. Oedegard, T. Loennroth, A. Schiller, A. Voinov, Phys. Rev. C 73, 064301 (2006)

    Article  ADS  Google Scholar 

  91. K.-H. Schmidt, B. Jurado, Phys. Rev. C 83, 061601 (2011)

    Article  ADS  Google Scholar 

  92. A.A. Naqvi, F. Käppeler, F. Dickmann, R. Müller, Phys. Rev. C 34, 218 (1986)

    Article  ADS  Google Scholar 

  93. R. Müller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984)

    Article  ADS  Google Scholar 

  94. V.V. Malinovskij, V.G. Vorob’eva, B.D. Kuz’minov, Report INDC(CCP)-239, IAEA, Vienna, Austria, 1985

  95. R.W. Mills, Fission product yield evaluation, PhD thesis, University of Birmingham, 1995

  96. M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, S. Hoblit, S. Holloway, T.D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kim, S. Kunieda, N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes, C.M. Mattoon, R.D. McKnight, S.F. Mughabghab, G.P.A. Nobre, G. Palmiotti, A. Palumbo, M.T. Pigni, V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, I.J. Thompson, A. Trkov, R.L. Vogt, S.C. van der Marck, A. Wallner, M.C. White, D. Wiarda, P.G. Young, Nucl. Data Sheet 112, 2887 (2011)

    Article  ADS  Google Scholar 

  97. M. Dahlinger, D. Vermeulen, K.-H. Schmidt, Nucl. Phys. A 376, 94 (1982)

    Article  ADS  Google Scholar 

  98. W.D. Myers, W.J. Swiatecki, Ann. Phys. 84, 186 (1974)

    Article  ADS  Google Scholar 

  99. A. Sobiczewski, Y.A. Litvinov, Phys. Rev. C 89, 024311 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Schmidt.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, KH., Jurado, B. Revealing hidden regularities with a general approach to fission. Eur. Phys. J. A 51, 176 (2015). https://doi.org/10.1140/epja/i2015-15176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15176-x

Keywords

Navigation