Skip to main content

Advertisement

Log in

Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Unik, J.E. Gindler, L.E. Glendenin, K.F. Flynn, A. Gorski, R.K. Sjoblom, in Proceedings of the Symposium on the Physics and Chemistry of Fission (IAEA Vienna, Rochester, 1973) 19

  2. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. 14, 1832 (1976)

    Article  ADS  Google Scholar 

  3. J.-P. Bocquet, R. Brissot, H.R. Faust, M. Fowler, J. Wilhelmy, M. Asghar, M. Djebara, Nucl. Phys. A 502, 213 (1989)

    Article  ADS  Google Scholar 

  4. C. Schmitt et al., Nucl. Phys. A 430, 21 (1984)

    Article  ADS  Google Scholar 

  5. W. Lang, H.-G. Clerc, H. Wohlfarth, H. Schrader, K.-H. Schmidt, Nucl. Phys. A 345, 34 (1980)

    Article  ADS  Google Scholar 

  6. I. Tsekhanovich et al., Nucl. Phys. A 688, 633 (2001)

    Article  ADS  Google Scholar 

  7. A. Bail et al., Phys. Rev. C 84, 034605 (2011)

    Article  ADS  Google Scholar 

  8. J. Randrup, P. Möller, Phys. Rev. C 88, 064606 (2013)

    Article  ADS  Google Scholar 

  9. P. Talou, B. Becker, T. Kawano, M.B. Chadwick, Y. Danon, Phys. Rev. C 83, 064612 (2011)

    Article  ADS  Google Scholar 

  10. O. Litaize, O. Serot, Phys. Rev. C 82, 054616 (2010)

    Article  ADS  Google Scholar 

  11. K.-H. Schmidt, B. Jurado, Ch. Amouroux, JEFF Report 24, NEA Data Bank of the OECD (2014)

  12. J.-F. Lemaitre, S. Panebianco, J.-L. Sida, S. Hilaire, S. Heinrich, Phys. Rev. C 92, 034617 (2015)

    Article  ADS  Google Scholar 

  13. N. Dubray, H. Goutte, J.-P. Delaroche, Phys. Rev. C 77, 014310 (2008)

    Article  ADS  Google Scholar 

  14. M. Bernas et al., Nucl. Phys. A 616, 352c (1997)

    Article  ADS  Google Scholar 

  15. H. Geissel et al., Nucl. Instrum. Methods A 364, 150 (1992)

    Google Scholar 

  16. K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000)

    Article  ADS  Google Scholar 

  17. C. Böcktiegel et al., Nucl. Phys. A 802, 12 (2008)

    Article  ADS  Google Scholar 

  18. S. Steinhäuser et al., Nucl. Phys. A 634, 89 (1998)

    Article  ADS  Google Scholar 

  19. J.F. Martin, these proceedings

  20. M. Caamaño et al., Phys. Rev. C 88, 024605 (2013)

    Article  ADS  Google Scholar 

  21. C. Rodríguez-Tajes et al., Phys. Rev. C 89, 024614 (2014)

    Article  ADS  Google Scholar 

  22. H. Savajols et al., Nucl. Instrum. Methods B 204, 146 (2003)

    Article  ADS  Google Scholar 

  23. S. Pullanhiotan, M. Rejmund, A. Navin, W. Mittig, S. Bhattacharyya, Nucl. Instrum. Methods A 593, 343 (2008)

    Article  ADS  Google Scholar 

  24. M. Rejmund et al., Nucl. Instrum. Methods A 646, 184 (2011)

    Article  ADS  Google Scholar 

  25. Y. Alhassid, R.D. Levine, J.S. Karp, S.G. Steadman, Phys. Rev. C 20, 1789 (1979)

    Article  ADS  Google Scholar 

  26. Olivier Delaune, Technique de la cinématique inverse pour l’étude des rendements isotopiques des fragments de fission aux énergies GANIL, Physique Nucléaire Expérimentale [nucl-ex] (Université de Caen, 2012) https://tel.archives-ouvertes.fr/tel-00757425/

  27. R. Müller, A.A. Naqvi, F. Käppeler, F. Dickman, Phys. Rev. C 29, 885 (1984)

    Article  ADS  Google Scholar 

  28. M. Caamaño, F. Farget, Phys. Proc. 64, 114 (2015) Scientific Workshop on Nuclear Fission dynamics and the Emission of Prompt Neutrons and Gamma Rays, THEORY-3

    Article  ADS  Google Scholar 

  29. A.A. Naqvi, F. Käppeler, F. Dickmann, R. Müller, Phys. Rev. C 34, 218 (1986)

    Article  ADS  Google Scholar 

  30. K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)

    Article  ADS  Google Scholar 

  31. W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967)

    Google Scholar 

  32. C. Tsuchiya et al., J. Nucl. Sci. Tech. 37, 941 (2000)

    Article  Google Scholar 

  33. E.M. Kozulin, Proc. of FUSION06: Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier, Vol. 853 (AIP Press, Venise, Italy, 2006) p. 366

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Farget.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farget, F., Caamaño, M., Ramos, D. et al. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases. Eur. Phys. J. A 51, 175 (2015). https://doi.org/10.1140/epja/i2015-15175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15175-y

Keywords

Navigation