Skip to main content
Log in

\( \beta^{-}\) transitions of 16 7N9 \(\rightarrow\) 16 8O8 with optimized SDI residual interaction using pnTDA and TDA approximations

The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Within a developed particle-hole approach, a systematic study of the \(\beta^{-}\) transition from the ground state of the 16N nucleus to the ground and some exited states of the 16O nucleus has been carried out. The energy spectrum and the wave functions of pure configuration of the 16N and 16O nuclei are numerically obtained using the mean-field shell model with respect to the Woods-Saxon nuclear potential accompanying spin-orbit and Coulomb interaction. Considering SDI residual interaction, mixed configuration of ground and excited pnTDA and TDA states are extracted for the aforementioned nucleus. These energy spectra and corresponding eigenstates are highly correspondent to the experimental energy spectrum and eigenstates after adjusting the residual potential parameters using the Nelder-Mead (NM) algorithm. In this approach, the endpoint energy, log ft and the partial half-lives of some possible transitions are calculated. The obtained results using the optimized SDI approach are reasonably close to the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. I (Benjamin, New York, 1969)

  2. J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, 2007)

  3. M.R. Pahlavani, B. Firoozi, Z. Naturforsch. 68a, 709 (2013)

    ADS  Google Scholar 

  4. N. Schwierz, I. Wiedenhöver, A. Volya, arXiv:0709.3525v1 [nucl-th] (2007)

  5. S.A. Moszkowski, Phys. Rev. C 32, 1063 (1985)

    Article  ADS  Google Scholar 

  6. M. Waroquier, K. Heyde, Nucl. Phys. A 144, 481 (1970)

    Article  ADS  Google Scholar 

  7. L. Zamick, B. Kleszyk, Y.Y. Sharon, S.J.Q. Robinson, Phys. Rev. C 90, 027305 (2014)

    Article  ADS  Google Scholar 

  8. K.T. Hecht, A. Adler, Nucl. Phys. A 37, 129 (1969)

    Article  ADS  Google Scholar 

  9. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    Article  MATH  Google Scholar 

  10. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9, 112 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Stetcu, C.W. Johnson, Phys. Rev. C 67, 044315 (2003)

    Article  ADS  Google Scholar 

  12. H. Heiskanen, M.T. Mustonen, J. Suhonen, J. Phys. G: Nucl. Part. Phys. 34, 837 (2007)

    Article  Google Scholar 

  13. M. Aunola, J. Suhonen, Nucl. Phys. A 602, 133 (1996)

    Article  ADS  Google Scholar 

  14. D.J. Rowe, Nuclear Collective Motion (Methuen & Co. Ltd. London, 1980)

  15. H. Behrens, W. Buhring, Electron Radial Wave Functions and Nuclear Beta Decay (Clarendon, Oxford, 1982)

  16. M.T. Mustonen, M. Aunola, J. Suhonen, Phys. Rev. C 73, 054301 (2006)

    Article  ADS  Google Scholar 

  17. E. Ydrefors, M.T. Mustonen, J. Suhonen, Nucl. Phys. A 842, 33 (2010)

    Article  ADS  Google Scholar 

  18. B. Blank, J.C. Thomas, P. Ascher et al., Eur. Phys. J. A 51, 8 (2015)

    Article  ADS  Google Scholar 

  19. F. Ameil, M. Bernas, P. Armbruster et al., Eur. Phys. J. A 1, 275 (1998)

    Article  ADS  Google Scholar 

  20. J.C. Thomas, L. Achouri et al., Eur. Phys. J. A 21, 419 (2004)

    Article  ADS  Google Scholar 

  21. M. Avriel, Nonlinear Programming: Analysis and Methods (Dover Publications, 2003)

  22. I.D. Coupe, C.J. Price, Comput. Optim. Appl. 21, 169 (2002)

    Article  MathSciNet  Google Scholar 

  23. F. Andreozzi, F. Knapp, N. Lo Iudice, A. Porrino, J. Kvasil, Phys. Rev. C 78, 054308 (2008)

    Article  ADS  Google Scholar 

  24. D. Bianco, F. Knapp, N. Lo Iudice, F. Andreozzi, A. Porrino, Phys. Rev. C 85, 014313 (2012)

    Article  ADS  Google Scholar 

  25. P.J. Brussaard, P.W.M. Glaudemans, Shell-Model Applications in Nuclear Spectroscopy (North-Holland Pub. Co., 1977)

  26. James H. Luscombe, Marshall Luban, Phys. Rev. E 57, 7274 (1998)

    Article  ADS  Google Scholar 

  27. J.C. Hardy, I.S. Towner, V.T. Koslowsky, E. Hagberg, H. Schmeing, Nucl. Phys. A 509, 429 (1990)

    Article  ADS  Google Scholar 

  28. E. Fermi, Z. Phys. 88, 161 (1934)

    Article  ADS  Google Scholar 

  29. G. Gamow, E. Teller, Phys. Rev. 49, 895 (1936)

    Article  MATH  ADS  Google Scholar 

  30. H. Primakoff, S.P. Rosen, Rep. Prog. Phys. 22, 121 (1959)

    Article  ADS  Google Scholar 

  31. N.B. Gove, M.J. Martin, At. Data Nucl. Data Tables 10, 205 (1971)

    Article  ADS  Google Scholar 

  32. J. Suhonen, Nucl. Phys. A 563, 205 (1993)

    Article  ADS  Google Scholar 

  33. National nuclear data center, Brookhaven National Laboratory, http://www.nndc.bnl.gov

  34. A. Gilat, V. Subramaniam, Numerical Methods for Engineers and Scientists (Wiley, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Pahlavani.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahlavani, M.R., Firoozi, B. \( \beta^{-}\) transitions of 16 7N9 \(\rightarrow\) 16 8O8 with optimized SDI residual interaction using pnTDA and TDA approximations. Eur. Phys. J. A 51, 149 (2015). https://doi.org/10.1140/epja/i2015-15149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15149-1

Keywords

Navigation