Skip to main content
Log in

Physics opportunities with meson beams

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. QCD and Hadron Physics, Summary of the DNP Town Meeting held September 13–15, 2014 at Temple University in Philadelphia, PA, http://arxiv.org/ftp/arxiv/papers/1502/1502.05728.pdf.

  2. G. Höhler, Pion-Nucleon Scattering, in Landoldt-Börnstein, Vol. I/9b2, edited by H. Schopper (Springer-Verlag, Berlin, 1983).

  3. R.E. Cutkosky et al., Phys. Rev. D 20, 2804 (1979).

    Article  ADS  Google Scholar 

  4. R.E. Cutkosky, C.P. Forsyth, R.E. Hendrick, R.L. Kelly, Phys. Rev. D 20, 2839 (1979).

    Article  ADS  Google Scholar 

  5. Richard A. Arndt, John M. Ford, L. David Roper, Phys. Rev. D 32, 1085 (1985).

    Article  ADS  Google Scholar 

  6. Richard A. Arndt, Zhujun Li, L. David Roper, Ron L. Workman, John M. Ford, Phys. Rev. D 43, 2131 (1991).

    Article  ADS  Google Scholar 

  7. Richard A. Arndt, Ron L. Workman, Marcello M. Pavan, Phys. Rev. C 49, 2729 (1994).

    Article  ADS  Google Scholar 

  8. Richard A. Arndt, Igor I. Strakovsky, Ron L. Workman, Marcello M. Pavan, Phys. Rev. C 52, 2120 (1995).

    Article  ADS  Google Scholar 

  9. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 74, 045205 (2006).

    Article  ADS  Google Scholar 

  10. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014).

    Article  Google Scholar 

  11. Nathan Isgur, Gabriel Karl, Phys. Lett. B 72, 109 (1977).

    Article  ADS  Google Scholar 

  12. Nathan Isgur, Gabriel Karl, Phys. Rev. D 18, 4187 (1978).

    Article  ADS  Google Scholar 

  13. Nathan Isgur, Gabriel Karl, Phys. Rev. D 19, 2653 (1979).

    Article  ADS  Google Scholar 

  14. Nathan Isgur, Gabriel Karl, Phys. Rev. D 20, 1191 (1979).

    Article  ADS  Google Scholar 

  15. K.C. Bowler, P.J. Corvi, A.J.G. Hey, P.D. Jarvis, R.C. King, Phys. Rev. D 24, 197 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  16. C.S. Kalman, Phys. Rev. D 26, 2326 (1982).

    Article  ADS  Google Scholar 

  17. M.G. do Amaral, N. Zagury, Phys. Rev. D 27, 2668 (1983).

    Article  ADS  Google Scholar 

  18. K.F. Liu, C.W. Wong, Phys. Rev. D 28, 170 (1983).

    Article  ADS  Google Scholar 

  19. J. Carlson, J.B. Kogut, V.R. Pandharipande, Phys. Rev. D 28, 2807 (1983).

    Article  ADS  Google Scholar 

  20. R.K. Bhaduri, B.K. Jennings, J.C. Waddington, Phys. Rev. D 29, 2051 (1984).

    Article  ADS  Google Scholar 

  21. M.V.N. Murthy, Mira Dey, Jishnu Dey, R.K. Bhaduri, Phys. Rev. D 30, 152 (1984).

    Article  ADS  Google Scholar 

  22. R. Sartor, Fl. Stancu, Phys. Rev. D 31, 128 (1985).

    Article  ADS  Google Scholar 

  23. Michael P. Mattis, Marek Karliner, Phys. Rev. D 31, 2833 (1985).

    Article  ADS  Google Scholar 

  24. Marek Karliner, Michael P. Mattis, Phys. Rev. D 34, 1991 (1986).

    Article  ADS  Google Scholar 

  25. Simon Capstick, Nathan Isgur, Phys. Rev. D 34, 2809 (1986).

    Article  ADS  Google Scholar 

  26. H.J. Weber, H.T. Williams, Phys. Lett. B 205, 118 (1988).

    Article  ADS  Google Scholar 

  27. Yuval Ne’eman, Djordje Sijački, Phys. Rev. D 37, 3267 (1988).

    Article  MathSciNet  Google Scholar 

  28. M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995).

    Article  ADS  Google Scholar 

  29. Z. Dziembowski, M. Fabre de la Ripelle, Gerald A. Miller, Phys. Rev. C 53, R2038 (1996).

    Article  ADS  Google Scholar 

  30. U. Zückert, R. Alkofer, H. Weigel, H. Reinhardt, Phys. Rev. C 55, 2030 (1997).

    Article  ADS  Google Scholar 

  31. H.L.L. Roberts, L. Chang, I.C. Cloet, C.D. Roberts, Few-Body Syst. 51, 1 (2011).

    Article  ADS  Google Scholar 

  32. D.J. Wilson, I.C. Cloet, L. Chang, C.D. Roberts, Phys. Rev. C 85, 025205 (2012).

    Article  ADS  Google Scholar 

  33. C. Chen, L. Chang, C.D. Roberts, S. Wan, D.J. Wilson, Few-Body Syst. 53, 293 (2012).

    Article  ADS  Google Scholar 

  34. C.B. Lang, V. Verduci, Phys. Rev. D 87, 054502 (2013).

    Article  ADS  Google Scholar 

  35. R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Phys. Rev. D 84, 074508 (2011).

    Article  ADS  Google Scholar 

  36. BGR Collaboration (G.P. Engel et al.), Phys. Rev. D 87, 074504 (2013).

    Article  Google Scholar 

  37. Roman Koniuk, Nathan Isgur, Phys. Rev. Lett. 44, 845 (1980).

    Article  ADS  Google Scholar 

  38. G.R. Goldstein, J. Maharana, Nuovo Cimento A 59, 393 (1980).

    Article  ADS  Google Scholar 

  39. G.R. Goldstein, in Proceedings of the Turin Diquarks Workshop, held October 24-25, 1988 in Beijing, China (1988) pp. 158--166.

  40. R.L. Workman, L. Tiator, A. Sarantsev, Phys. Rev. C 87, 068201 (2013).

    Article  ADS  Google Scholar 

  41. D. Rönchen et al., Eur. Phys. J. A 50, 101 (2014).

    Article  ADS  Google Scholar 

  42. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 88, 035209 (2013).

    Article  ADS  Google Scholar 

  43. D. Rönchen et al., Eur. Phys. J. A 49, 44 (2013).

    Article  ADS  Google Scholar 

  44. M. Clajus, B.M.K. Nefkens, πN Newsletter 7, 76 (1992).

    Google Scholar 

  45. A.V. Anisovich et al., Eur. Phys. J. A 48, 15 (2012).

    Article  ADS  Google Scholar 

  46. A.V. Anisovich et al., Eur. Phys. J. A 48, 88 (2012).

    Article  ADS  Google Scholar 

  47. V. Shklyar, H. Lenske, U. Mosel, Phys. Rev. C 72, 015210 (2005).

    Article  ADS  Google Scholar 

  48. V. Shklyar, H. Lenske, U. Mosel, Phys. Lett. B 650, 172 (2007).

    Article  ADS  Google Scholar 

  49. B. Julia-Diaz, T.S.H. Lee, A. Matsuyama, T. Sato, Phys. Rev. C 76, 065201 (2007).

    Article  ADS  Google Scholar 

  50. A. Sarantsev, Chin. Phys. C 33, 1085 (2009).

    Article  ADS  Google Scholar 

  51. A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thomas, Eur. Phys. J. A 47, 153 (2011).

    Article  ADS  Google Scholar 

  52. F. Huang et al., Phys. Rev. C 85, 054003 (2012).

    Article  ADS  Google Scholar 

  53. M. Shrestha, D.M. Manley, Phys. Rev. C 86, 055203 (2012).

    Article  ADS  Google Scholar 

  54. L. Wolfenstein, Phys. Rev. 96, 1654 (1954).

    Article  ADS  MATH  Google Scholar 

  55. A. de Lesquen et al., Phys. Lett. B 40, 277 (1972).

    Article  ADS  Google Scholar 

  56. I. Supek et al., Phys. Rev. D 47, 1762 (1993).

    Article  ADS  Google Scholar 

  57. E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).

    Article  ADS  Google Scholar 

  58. B.C. Jackson, Y. Oh, H. Haberzettl, K. Nakayama, Phys. Rev. C 89, 025206 (2014).

    Article  ADS  Google Scholar 

  59. A. Agadjanov, V. Bernard, U.G. Meißner, A. Rusetsky, Nucl. Phys. B 886, 1199 (2014).

    Article  ADS  Google Scholar 

  60. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Phys. Rev. Lett. 106, 192501 (2011).

    Article  ADS  Google Scholar 

  61. E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.G. Meißner, Eur. Phys. J. A 49, 82 (2013).

    Article  ADS  Google Scholar 

  62. L. Tiator et al., Phys. Rev. C 82, 055203 (2010).

    Article  ADS  Google Scholar 

  63. H. Kamano, Phys. Rev. C 88, 045203 (2013).

    Article  ADS  Google Scholar 

  64. A.D. Lahiff, I.R. Afnan, Phys. Rev. C 60, 024608 (1999).

    Article  ADS  Google Scholar 

  65. B. Borasoy, R. Nißler, W. Weise, Eur. Phys. J. A 25, 79 (2005).

    Article  Google Scholar 

  66. R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Phys. Rev. C 86, 015202 (2012).

    Article  ADS  Google Scholar 

  67. M. Batinic, S. Ceci, A. Svarc, B. Zauner, Phys. Rev. C 82, 038203 (2010).

    Article  ADS  Google Scholar 

  68. V. Shklyar, H. Lenske, U. Mosel, G. Penner, Phys. Rev. C 71, 055206 (2005) 72.

    Article  ADS  Google Scholar 

  69. V. Shklyar, H. Lenske, U. Mosel, Phys. Rev. C 87, 015201 (2013).

    Article  ADS  Google Scholar 

  70. D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007).

    Article  ADS  Google Scholar 

  71. R.A. Arndt, W.J. Briscoe, M.W. Paris, I.I. Strakovsky, R.L. Workman, Chin. Phys. C 33, 1063 (2009).

    Article  ADS  Google Scholar 

  72. I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013).

    Article  ADS  Google Scholar 

  73. I.G. Aznauryan, V.D. Burkert, G.V. Fedotov, B.S. Ishkhanov, V.I. Mokeev, Phys. Rev. C 72, 045201 (2005).

    Article  ADS  Google Scholar 

  74. A. Anisovich, E. Klempt, A. Sarantsev, U. Thoma, Eur. Phys. J. A 24, 111 (2005).

    Article  ADS  Google Scholar 

  75. V. Shklyar, H. Lenske, U. Mosel, arXiv:1409.7920 [nucl-th].

  76. H. Kamano, B. Julia-Diaz, T.-S.H. Lee, A. Matsuyama, T. Sato, Phys. Rev. C 79, 025206 (2009).

    Article  ADS  Google Scholar 

  77. D.M. Manley, R.A. Arndt, Y. Goradia, V.L. Teplitz, Phys. Rev. D 30, 904 (1984).

    Article  ADS  Google Scholar 

  78. M. Shrestha, D.M. Manley, Phys. Rev. C 86, 045204 (2012).

    Article  ADS  Google Scholar 

  79. H. Zhang, J. Tulpan, M. Shrestha, D.M. Manley, Phys. Rev. C 88, 035204 (2013).

    Article  ADS  Google Scholar 

  80. L.V. Gribov et al., JETP Lett. 45, 515 (1987).

    ADS  Google Scholar 

  81. L.V. Gribov et al., Phys. Lett. B 202, 276 (1988).

    Article  ADS  Google Scholar 

  82. A.V. Anisovich et al., Nuovo Cimento A 106, 547 (1993).

    Article  ADS  Google Scholar 

  83. B.Z. Kopeliovich et al., Z. Phys. C 73, 125 (1996).

    Article  Google Scholar 

  84. B.Z. Kopeliovich et al., Phys. Rev. D 76, 094020 (2007).

    Article  ADS  Google Scholar 

  85. B.H. Bransden, R. Gordon Moorhouse, The Pion-Nucleon System (Princeton University Press, 1973).

  86. W.J. Briscoe, D. Schott, I.I. Strakovsky, R.L. Workman, Institute of Nuclear Studies of the George Washington University Database, http://gwdac.phys.gwu.edu/.

  87. EPECUR Collaboration (I.G. Alekseev et al.), Phys. Rev. C 91, 025205 (2015).

    Article  ADS  Google Scholar 

  88. R. Koch, Z. Phys. C 29, 597 (1985).

    Article  ADS  Google Scholar 

  89. Crystal Ball Collaboration (S. Prakhov et al.), Phys. Rev. C 72, 015203 (2005).

    Article  Google Scholar 

  90. B. Krusche, C. Wilkin, Prog. Part. Nucl. Phys. 80, 43 (2014).

    Article  ADS  Google Scholar 

  91. V.Z. Peterson, Dubna preprint, 30-64 (1964) unpublished.

  92. W.B. Richards et al., Phys. Rev. Lett. 16, 1221 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  93. F. Bulos et al., Phys. Rev. 187, 1827 (1969).

    Article  ADS  Google Scholar 

  94. W. Deinet et al., Nucl. Phys. B 11, 495 (1969).

    Article  ADS  Google Scholar 

  95. M. Basile et al., Nuovo Cimento A 3, 371 (1971).

    Article  ADS  Google Scholar 

  96. R.B. Chaffee, PhD Thesis, Lawrence Berkeley Laboratory, LBL-1060, 1975.

  97. J.E. Nelson, PhD Thesis, Lawrence Berkeley Laboratory, LBL-1019, 1972.

  98. J. Feltesse et al., Nucl. Phys. B 93, 242 (1975).

    Article  ADS  Google Scholar 

  99. R.M. Brown et al., Nucl. Phys. B 153, 89 (1979).

    Article  ADS  Google Scholar 

  100. H.R. Crouch et al., Phys. Rev. D 21, 3023 (1980).

    Article  ADS  Google Scholar 

  101. T.W. Morrison, PhD Thesis, The George Washington University, Dec. 1999.

  102. V. Kuznetsov et al., Phys. Lett. B 647, 23 (2007).

    Article  ADS  Google Scholar 

  103. F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90 (2007).

    Article  ADS  Google Scholar 

  104. CBELSA/TAPS Collaboration (I. Jaegle et al.), Phys. Rev. Lett. 100, 252002 (2008).

    Article  Google Scholar 

  105. CBELSA/TAPS Collaboration (I. Jaegle et al.), Eur. Phys. J. A 47, 89 (2011).

    Article  Google Scholar 

  106. Crystal Ball/TAPS at MAMI and A2 Collaborations (D. Werthmüller et al.), Phys. Rev. Lett. 111, 232001 (2013).

    Article  Google Scholar 

  107. A2 Collaboration at MAMI (D. Werthmüller et al.), Phys. Rev. C 90, 015205 (2014).

    Article  ADS  Google Scholar 

  108. V. Kuznetsov et al., Phys. Rev. C 83, 022201 (2011).

    Article  ADS  Google Scholar 

  109. K.W. Bell et al., Nucl. Phys. B 222, 389 (1983).

    Article  ADS  Google Scholar 

  110. T. Mart, M.J. Kholili, Phys. Rev. C 86, 022201 (2012).

    Article  ADS  Google Scholar 

  111. V.D. Burkert, arXiv:1412.0241 [nucl-ex].

  112. O. Van Dyck et al., Phys. Rev. Lett. 23, 50 (1969).

    Article  ADS  Google Scholar 

  113. J.J. Jones et al., Phys. Rev. Lett. 26, 860 (1971).

    Article  ADS  Google Scholar 

  114. T.M. Knasel et al., Phys. Rev. D 11, 1 (1975).

    Article  ADS  Google Scholar 

  115. R.D. Baker et al., Nucl. Phys. B 141, 29 (1978).

    Article  ADS  Google Scholar 

  116. D.H. Saxon et al., Nucl. Phys. B 162, 522 (1980).

    Article  ADS  Google Scholar 

  117. Crystal Ball Collaboration (A. Starostin et al.), Phys. Rev. C 64, 055205 (2001).

    Article  Google Scholar 

  118. K. Shirotori et al., Phys. Rev. Lett. 109, 132002 (2012).

    Article  ADS  Google Scholar 

  119. D.J. Candlin et al., Nucl. Phys. B 226, 1 (1983).

    Article  ADS  Google Scholar 

  120. R. Ewald et al., Phys. Lett. B 713, 180 (2012).

    Article  ADS  Google Scholar 

  121. A. Ramos, E. Oset, Phys. Lett. B 727, 287 (2013).

    Article  ADS  Google Scholar 

  122. H. Karami et al., Nucl. Phys. B 134, 503 (1979).

    Article  ADS  Google Scholar 

  123. A2 Collaboration at MAMI (I.I. Strakovsky et al.), Phys. Rev. C 91, 045207 (2015).

    Article  ADS  Google Scholar 

  124. F. Huang, H. Haberzettl, K. Nakayama, Phys. Rev. C 87, 054004 (2013).

    Article  ADS  Google Scholar 

  125. F. Huang, H. Haberzettl, K. Nakayama, Int. J. Mod. Phys. Conf. Ser. 26, 1460113 (2014).

    Article  Google Scholar 

  126. CLAS Collaboration (K.P. Adhikari et al.), Phys. Rev. C 89, 055206 (2014).

    Article  ADS  Google Scholar 

  127. M. Döring, E. Oset, B.S. Zou, Phys. Rev. C 78, 025207 (2008).

    Article  ADS  Google Scholar 

  128. P. Lebiedowicz, A. Szczurek, Phys. Rev. D 87, 074037 (2013).

    Article  ADS  Google Scholar 

  129. EIC14 - The International Workshop on Accelerator Science and Technology for Electron-Ion Collider, held March 17-21, 2014 at Newport News, VA, http://www.jlab.org/conferences/eic2014/.

  130. M. Gorchtein, P. Guo, A.P. Szczepaniak, Phys. Rev. C 86, 015205 (2012).

    Article  ADS  Google Scholar 

  131. BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 80, 052002 (2009).

    Article  ADS  Google Scholar 

  132. Belle Collaboration (S. Uehara et al.), Phys. Rev. D 86, 092007 (2012).

    Article  Google Scholar 

  133. Kim Maltman, Nathan Isgur, Phys. Rev. D 22, 1701 (1980).

    Article  ADS  Google Scholar 

  134. Kuang-Ta Chao, Nathan Isgur, Gabriel Karl, Phys. Rev. D 23, 155 (1981).

    Article  ADS  Google Scholar 

  135. Y. Qiang et al., Phys. Lett. B 694, 123 (2010).

    Article  ADS  Google Scholar 

  136. H. Sako et al., JINST 9, C04009 (2014) http://iopscience.iop.org/1748-0221/9/04/C04009/pdf/1748-0221_9_04_C04009.pdf.

    Article  Google Scholar 

  137. G.P. Gopal et al., Nucl. Phys. B 119, 362 (1977).

    Article  ADS  Google Scholar 

  138. H. Zhang, J. Tulpan, M. Shrestha, D.M. Manley, Phys. Rev. C 88, 035205 (2013).

    Article  ADS  Google Scholar 

  139. Xian-Hui Zhong, Qiang Zhao, Phys. Rev. C 88, 015208 (2013).

    Article  ADS  Google Scholar 

  140. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Phys. Rev. C 90, 065204 (2014).

    Article  ADS  Google Scholar 

  141. P. Gao, J. Shi, B.S. Zou, Phys. Rev. C 86, 025201 (2012).

    Article  ADS  Google Scholar 

  142. B.C. Liu, J.J. Xie, Phys. Rev. C 86, 055202 (2012).

    Article  ADS  Google Scholar 

  143. J. Shi, B.S. Zou, Phys. Rev. C 91, 035202 (2015).

    Article  ADS  Google Scholar 

  144. CLAS Collaboration (K. Moriya et al.), Phys. Rev. Lett. 112, 082004 (2014).

    Article  ADS  Google Scholar 

  145. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995).

    Article  ADS  Google Scholar 

  146. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meißner, Nucl. Phys. A 725, 181 (2003).

    Article  ADS  Google Scholar 

  147. D.W. Thomas, A. Engler, H.E. Fisk, R.W. Kraemer, Nucl. Phys. B 56, 15 (1973).

    Article  ADS  Google Scholar 

  148. R.J. Hemingway, Nucl. Phys. B 253, 742 (1985).

    Article  ADS  Google Scholar 

  149. Crystal Ball Collaboration (S. Prakhov et al.), Phys. Rev. C 70, 034605 (2004).

    Article  Google Scholar 

  150. CLAS Collaboration (K. Moriya et al.), Phys. Rev. C 87, 035206 (2013).

    Article  Google Scholar 

  151. B.C. Jackson, Y. Oh, H. Haberzettl, K. Nakayama, Phys. Rev. C 91, 065208 (2015).

    Article  ADS  Google Scholar 

  152. M. Dugger, J. Goetz, L. Guo, E. Pasyuk, I.I. Strakovsky, D.P. Watts, V. Ziegler (Spokespersons) (The Very Strange Collaboration), Photoproduction of the Very Strangest Baryons on a Proton Target in CLAS12, JLab Proposal E12--11--005a, Newport News, VA, USA, 2012, http://www.jlab.org/exp_prog/proposals/12/PR12-12-008.pdf.

  153. M.R. Pennington, AIP Conf. Proc. 1560, 11 (2013).

    Article  ADS  Google Scholar 

  154. L.S. Brown, R.L. Goble, Phys. Rev. D 4, 723 (1971).

    Article  ADS  Google Scholar 

  155. R.L. Jaffe, Phys. Rev. D 15, 267 (1977).

    Article  ADS  Google Scholar 

  156. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006) For recent experimental work on the κ, see BES Collaboration (M. Ablikim), Phys. Lett. B 633.

    Article  ADS  Google Scholar 

  157. M.R. Pennington, eConf C 070910, 106 (2007).

    Google Scholar 

  158. A. Astier et al., Phys. Lett. B 25, 294 (1967).

    Article  ADS  Google Scholar 

  159. J.D. Weinstein, N. Isgur, Phys. Rev. D 41, 2236 (1990).

    Article  ADS  Google Scholar 

  160. D.O. Caldwell, Mod. Phys. Lett. A 2, 771 (1987).

    Article  ADS  Google Scholar 

  161. Particle Data Group Collaboration (J.J. Hernandez et al.), Phys. Lett. B 239, 1 (1990).

    Google Scholar 

  162. K. Dooley, E.S. Swanson, T. Barnes, Phys. Lett. B 275, 478 (1992).

    Article  ADS  Google Scholar 

  163. M.B. Voloshin, L.B. Okun, JETP Lett. 23, 333 (1976).

    ADS  Google Scholar 

  164. E.S. Swanson, Phys. Lett. B 588, 189 (2004).

    Article  ADS  Google Scholar 

  165. E.S. Swanson, Phys. Rep. 429, 243 (2006).

    Article  ADS  Google Scholar 

  166. H. Fritzsch, P. Minkowski, Nuovo Cimento A 30, 393 (1975).

    Article  ADS  Google Scholar 

  167. R.L. Jaffe, K. Johnson, Phys. Lett. B 60, 201 (1976).

    Article  ADS  Google Scholar 

  168. R.L. Jaffe, K. Johnson, Z. Ryzak, Ann. Phys. 168, 344 (1986).

    Article  ADS  Google Scholar 

  169. Y. Chen et al., Phys. Rev. D 73, 014516 (2006).

    Article  ADS  Google Scholar 

  170. M. Boglione, M.R. Pennington, Phys. Rev. Lett. 79, 1998 (1997).

    Article  ADS  Google Scholar 

  171. C. Amsler, F.E. Close, Phys. Rev. D 53, 295 (1996).

    Article  ADS  Google Scholar 

  172. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007).

    Article  ADS  Google Scholar 

  173. V. Crede, C.A. Meyer, Prog. Part. Nucl. Phys. 63, 74 (2009).

    Article  ADS  Google Scholar 

  174. V. Mathieu, N. Kochelev, V. Vento, Int. J. Mod. Phys. E 18, 1 (2009).

    Article  ADS  Google Scholar 

  175. R. Giles, S.H.H. Tye, Phys. Rev. Lett. 37, 1175 (1976).

    Article  ADS  Google Scholar 

  176. T. Barnes, PhD Thesis, Caltech, 1977.

  177. D. Horn, J. Mandula, Phys. Rev. D 17, 898 (1978).

    Article  ADS  Google Scholar 

  178. K.J. Juge, J. Kuti, C.J. Morningstar, Phys. Rev. Lett. 82, 4400 (1999).

    Article  ADS  Google Scholar 

  179. Hadron Spectrum Collaboration (J.J. Dudek et al.), Phys. Rev. D 88, 094505 (2013).

    Google Scholar 

  180. C.A. Meyer, Y. Van Haarlem, Phys. Rev. C 82, 025208 (2010).

    Article  ADS  Google Scholar 

  181. A.P. Szczepaniak, M. Swat, A.R. Dzierba, S. Teige, Phys. Rev. Lett. 91, 092002 (2003).

    Article  ADS  Google Scholar 

  182. A.R. Dzierba et al., Phys. Rev. D 73, 072001 (2006).

    Article  ADS  Google Scholar 

  183. COMPASS Collaboration (M. Alekseev et al.), Phys. Rev. Lett. 104, 241803 (2010).

    Article  ADS  Google Scholar 

  184. P.R. Page, E.S. Swanson, A.P. Szczepaniak, Phys. Rev. D 59, 034016 (1999).

    Article  ADS  Google Scholar 

  185. S. Godfrey, J. Napolitano, Rev. Mod. Phys. 71, 1411 (1999).

    Article  ADS  Google Scholar 

  186. V. Bernard, N. Kaiser, U.G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).

    Article  ADS  Google Scholar 

  187. V. Bernard, N. Kaiser, U.G. Meißner, Nucl. Phys. A 615, 483 (1997).

    Article  ADS  Google Scholar 

  188. N. Fettes, U.G. Meißner, M. Mojzis, S. Steininger, Ann. Phys. 283, 273 (2000).

    Article  ADS  Google Scholar 

  189. N. Fettes, V. Bernard, U.G. Meißner, Nucl. Phys. A 669, 269 (2000).

    Article  ADS  Google Scholar 

  190. D. Siemens, V. Bernard, E. Epelbaum, H. Krebs, U.G. Meißner, Phys. Rev. C 89, 065211 (2014).

    Article  ADS  Google Scholar 

  191. N. Fettes, U.G. Meißner, S. Steininger, Nucl. Phys. A 640, 199 (1998).

    Article  ADS  Google Scholar 

  192. N. Fettes, U.G. Meißner, Nucl. Phys. A 676, 311 (2000).

    Article  ADS  Google Scholar 

  193. N. Fettes, U.G. Meißner, Nucl. Phys. A 679, 629 (2001).

    Article  ADS  Google Scholar 

  194. N. Fettes, U.G. Meißner, Nucl. Phys. A 693, 693 (2001).

    Article  ADS  Google Scholar 

  195. T. Becher, H. Leutwyler, JHEP 06, 017 (2001) hep-ph/0103263.

    Article  ADS  Google Scholar 

  196. K.A. Wendt, B.D. Carlsson, A. Ekström, arXiv:1410.0646 [nucl-th].

  197. D. Gotta et al., Lect. Notes Phys. 745, 165 (2008).

    Article  ADS  Google Scholar 

  198. V. Baru et al., Nucl. Phys. A 872, 69 (2011).

    Article  ADS  Google Scholar 

  199. V. Baru et al., Phys. Lett. B 694, 473 (2011).

    Article  ADS  Google Scholar 

  200. C. Ditsche, M. Hoferichter, B. Kubis, U.-G. Meißner, JHEP 06, 043 (2012).

    Article  ADS  Google Scholar 

  201. J. Ruiz de Elvira, C. Ditsche, M. Hoferichter, B. Kubis, U.G. Meißner, EPJ Web of Conferences 73, 05002 (2014).

    Article  Google Scholar 

  202. N. Kaiser, P.B. Siegel, W. Weise, Phys. Lett. B 362, 23 (1995).

    Article  ADS  Google Scholar 

  203. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998).

    Article  ADS  Google Scholar 

  204. J.A. Oller, E. Oset, A. Ramos, Prog. Part. Nucl. Phys. 45, 157 (2000).

    Article  ADS  Google Scholar 

  205. J.A. Oller, U.G. Meißner, Phys. Lett. B 500, 263 (2001).

    Article  ADS  Google Scholar 

  206. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002).

    Article  ADS  Google Scholar 

  207. J. Nieves, E. Ruiz Arriola, Phys. Rev. D 64, 116008 (2001).

    Article  ADS  Google Scholar 

  208. T. Inoue, E. Oset, M.J. Vicente Vacas, Phys. Rev. C 65, 035204 (2002).

    Article  ADS  Google Scholar 

  209. U.-G. Meißner, J.A. Oller, Nucl. Phys. A 673, 311 (2000).

    Article  ADS  Google Scholar 

  210. M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 706, 431 (2002).

    Article  ADS  Google Scholar 

  211. C. Garcia-Recio, M.F.M. Lutz, J. Nieves, Phys. Lett. B 582, 49 (2004).

    Article  ADS  Google Scholar 

  212. V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, A.E. Kudryavtsev, Phys. Lett. B 586, 53 (2004).

    Article  ADS  Google Scholar 

  213. M. Döring, E. Oset, D. Strottman, Phys. Rev. C 73, 045209 (2006).

    Article  ADS  Google Scholar 

  214. M. Döring, E. Oset, D. Strottman, Phys. Lett. B 639, 59 (2006).

    Article  ADS  Google Scholar 

  215. M. Döring, Nucl. Phys. A 786, 164 (2007).

    Article  ADS  Google Scholar 

  216. M. Döring, K. Nakayama, Eur. Phys. J. A 43, 83 (2010).

    Article  ADS  Google Scholar 

  217. E. Oset, A. Ramos, Eur. Phys. J. A 44, 445 (2010).

    Article  ADS  Google Scholar 

  218. K.P. Khemchandani, H. Kaneko, H. Nagahiro, A. Hosaka, Phys. Rev. D 83, 114041 (2011).

    Article  ADS  Google Scholar 

  219. K.P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro, A. Hosaka, Phys. Rev. D 84, 094018 (2011).

    Article  ADS  Google Scholar 

  220. M. Döring, E. Oset, U.-G. Meißner, Eur. Phys. J. A 46, 315 (2010).

    Article  ADS  Google Scholar 

  221. B. Borasoy, U.-G. Meißner, R. Nißler, Phys. Rev. C 74, 055201 (2006).

    Article  ADS  Google Scholar 

  222. B. Borasoy, P.C. Bruns, U.G. Meißner, R. Nißler, Eur. Phys. J. A 34, 161 (2007).

    Article  ADS  Google Scholar 

  223. P.C. Bruns, M. Mai, U.-G. Meißner, Phys. Lett. B 697, 254 (2011).

    Article  ADS  Google Scholar 

  224. D. Ruic, M. Mai, U.-G. Meißner, Phys. Lett. B 704, 659 (2011).

    Article  ADS  Google Scholar 

  225. M. Mai, P.C. Bruns, U.-G. Meißner, Phys. Rev. D 86, 094033 (2012).

    Article  ADS  Google Scholar 

  226. D. Jido, M. Döering, E. Oset, Phys. Rev. C 77, 065207 (2008).

    Article  ADS  Google Scholar 

  227. J. Nieves, E. Ruiz Arriola, Nucl. Phys. A 679, 57 (2000).

    Article  ADS  Google Scholar 

  228. E.J. Garzon, E. Oset, Phys. Rev. C 91, 025201 (2015).

    Article  ADS  Google Scholar 

  229. M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, D. Rönchen, Nucl. Phys. A 851, 58 (2011).

    Article  ADS  Google Scholar 

  230. A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 49, 158 (2013).

    Article  ADS  Google Scholar 

  231. X. Cao, V. Shklyar, H. Lenske, Phys. Rev. C 88, 055204 (2013).

    Article  ADS  Google Scholar 

  232. M. Mai, U.G. Meißner, Nucl. Phys. A 900, 51 (2013).

    Article  ADS  Google Scholar 

  233. M. Mai, U.-G. Meißner, arXiv:1411.7884 [hep-ph].

  234. L. Roca, E. Oset, Phys. Rev. C 87, 055201 (2013).

    Article  ADS  Google Scholar 

  235. L. Roca, E. Oset, Phys. Rev. C 88, 055206 (2013).

    Article  ADS  Google Scholar 

  236. Y. Ikeda, T. Hyodo, W. Weise, Nucl. Phys. A 881, 98 (2012).

    Article  ADS  Google Scholar 

  237. M. Döring, U.G. Meißner, Phys. Lett. B 704, 663 (2011).

    Article  Google Scholar 

  238. M. Mai, V. Baru, E. Epelbaum, A. Rusetsky, arXiv:1411.4881 [nucl-th].

  239. E. Oset, A. Ramos, C. Bennhold, Phys. Lett. B 527, 99 (2002).

    Article  ADS  Google Scholar 

  240. M. Döring, D. Jido, E. Oset, Eur. Phys. J. A 45, 319 (2010).

    Article  ADS  Google Scholar 

  241. D.A. Sharov, V.L. Korotkikh, D.E. Lanskoy, Eur. Phys. J. A 47, 109 (2011).

    Article  ADS  Google Scholar 

  242. S. Sarkar, E. Oset, M.J. Vicente Vacas, Nucl. Phys. A 750, 294 (2005).

    Article  ADS  Google Scholar 

  243. E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 585, 243 (2004).

    Article  ADS  Google Scholar 

  244. J. Ajaka et al., Phys. Rev. Lett. 100, 052003 (2008).

    Article  ADS  Google Scholar 

  245. A. Martinez Torres, K.P. Khemchandani, E. Oset, Phys. Rev. C 77, 042203 (2008).

    Article  ADS  Google Scholar 

  246. K.P. Khemchandani, A. Martinez Torres, E. Oset, Eur. Phys. J. A 37, 233 (2008).

    Article  ADS  Google Scholar 

  247. M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009).

    Article  ADS  Google Scholar 

  248. M. Döring, M. Mai, U.G. Meißner, Phys. Lett. B 722, 185 (2013).

    Article  ADS  Google Scholar 

  249. D.S. Roberts, W. Kamleh, D.B. Leinweber, arXiv:1304.0325 [hep-lat].

  250. T.E.O. Ericson, V.W. Hughes, D.E. Nagle, The Meson Factories (University of California Press, 1991).

  251. Summary of the Report from the Working Group for The External Expert Panel on the Radioactive Material Leak Accident at the Hadron Experimental Facility of J-PARC, http://j-parc.jp/en/topics/HDAccident20130827_02.pdf .

  252. K.H. Hicks, H. Sako (Spokespersons), 3-Body Hadronic Reactions for New Aspects of Baryon Spectroscopy, J-PARC Proposal E45, Japan, 2012, http://www.phy.ohiou.edu/~hicks/NSF/2013/JPARC-P45.pdf.

  253. N.N. Alexeev, in Proceedings of RuPAC’2012, XXIII Russian Particle Accelerator Conference, Saint Petersburg, Russia, (2012) pp. 112--116, http://accelconf.web.cern.ch/AccelConf/rupac2012/papers/wezch01.pdf.

  254. A. Sandacz, Program of COMPASS-II at CERN (QCD Evolution Workshop, Santa Fe NM, 2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Briscoe.

Additional information

Communicated by U.-G. Meißner

William J. Briscoe received his PhD from the Catholic University of America (CUA) in 1978 (M.S. Northeastern 1972, B.A. CUA 1970). He was an assistant research professor for four years at UCLA. He came to the George Washington University in 1982 as an assistant professor, was promoted to associate professor in 1986 and professor in 1998. Currently, he is director of the GW/JLab Data Analysis Center and director of the GW Institute for Nuclear Studies. He has held guest and visiting scientist positions at several international laboratories.

Michael Döring received his PhD in 2007 from the Universitat de València, Spain. He held postdoctoral research positions at the Research Center Jülich, Germany (2007–2010) and at the HISKP/University of Bonn, Germany (2010–2014). He has been an assistant professor at The George Washington University since 2014. He received an NSF Career award in 2015. His research interests cover baryon spectroscopy and the phenomenology of photoproduction reactions, as well as finite–volume effects in Lattice QCD simulations.

Helmut Haberzettl is a theoretical nuclear and particle physicist. He received his doctoral degree from the University of Bonn, Germany, in 1979. He worked as a research associate at the University of South Africa, in Pretoria, and the University of Bonn. In 1988, he joined the faculty of The George Washington University in Washington, DC. He has held numerous visiting positions, mainly in Germany. His main areas of research include interactions of mesons and nucleons at intermediate energies, and the interactions of hadrons and photons as described by microscopic reaction theories.

D. Mark Manley is an experimentalist and phenomenologist in hadronic physics. He received the doctoral degree from the University of Wyoming in 1981 and worked as a postdoctoral research associate at Virginia Polytechnic Institute and State University and Lawrence Livermore National Laboratory before joining the Physics Department at Kent State University in 1986. He has been a full professor there since 1997. His recent research has focused on meson photoproduction and multichannel partial-wave analyses.

Megumi Naruki is an associate professor in the Department of Physics at Kyoto University. After obtaining her PhD at Kyoto University in 2006, she served as an assistant professor at KEK and conducted the first experiment to search for the Θ + pentaquark at the J-PARC Hadron Facility. Prior work experience includes the dilepton measurements at 12 GeV pA interactions. Her primary research activity is experimental hadron physics, especially baryon spectroscopy using intense meson beams.

Igor I. Strakovsky is an experimentalist and phenomenologist in hadronic physics. He received the doctoral degree from the Petersburg Nuclear Physics Institute in 1969 and worked as an associate research scientist and research scientist at PNPI before joining the Physics Department at The GeorgeWashington University in 1997. He has been a full research professor there since 2009. He is the primary person keeping up the much-referenced SAID database, providing a support of experimental programs associated with analyses of preliminary experimental data and help in the planning of new measurements. His recent research has focused on multichannel partial-wave analyses.

Eric Swanson is a professor of physics at the University of Pittsburgh specializing in the theory of hadronic structure. He obtained his PhD from the University of Toronto in 1991 and subsequently spent three years at MIT and six years in North Carolina before moving to Pittsburgh. He has published in theoretical hadronic physics, condensed matter physics, and biophysics and authored the book, “Science and Society”. He is a founder of the APS Topical Group on Hadronic Physics and has been a visiting scientist at TRIUMF, Oxford, JLab, and LANL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briscoe, W.J., Döring, M., Haberzettl, H. et al. Physics opportunities with meson beams. Eur. Phys. J. A 51, 129 (2015). https://doi.org/10.1140/epja/i2015-15129-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15129-5

Keywords

Navigation