Skip to main content
Log in

Self-consistent thermodynamics for the Tsallis statistics in the grand canonical ensemble: Nonrelativistic hadron gas

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable z = 1/(q − 1 is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Cleymans, AIP Conf. Proc. 1625, 31 (2014).

    Article  ADS  Google Scholar 

  2. T.S. Biró, Eur. Phys. J. A 40, 255 (2009).

    Article  ADS  Google Scholar 

  3. G.G. Barnaföldi, K. Ürmössy, T.S. Biró, J. Phys.: Conf. Ser. 270, 012008 (2011).

    ADS  Google Scholar 

  4. A. Esquivel, A. Lazarian, Astrophys. J. 710, 125 (2010).

    Article  ADS  Google Scholar 

  5. A.S. Betzler, E.P. Borges, Astron. Astrophys. 539, A158 (2012).

    Article  ADS  Google Scholar 

  6. ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 71, 1655 (2011).

    Article  ADS  Google Scholar 

  7. ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 693, 53 (2010).

    Article  ADS  Google Scholar 

  8. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. D 82, 052001 (2010).

    Article  ADS  Google Scholar 

  9. ATLAS Collaboration (G. Aad et al.), New J. Phys. 13, 053033 (2011).

    Article  ADS  Google Scholar 

  10. CMS Collaboration (V. Khachatryan et al.), Phys. Rev. Lett. 105, 022002 (2010).

    Article  ADS  Google Scholar 

  11. M. Rybczyński, Z. Włodarczyk, Eur. Phys. J. C 74, 2785 (2014).

    Article  ADS  Google Scholar 

  12. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013).

    Article  ADS  Google Scholar 

  13. A.S. Parvan, PoS Baldin-ISHEPP-XXII, 077 (2014).

    Google Scholar 

  14. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998).

    Article  ADS  Google Scholar 

  16. S. Abe, S. Martínez, F. Pennini, A. Plastino, Phys. Lett. A 281, 126 (2001).

    Article  ADS  MATH  Google Scholar 

  17. T.S. Biró, P. Ván, Phys. Rev. E 83, 061147 (2011).

    Article  ADS  Google Scholar 

  18. T.S. Biró, Is there a Temperature? Conceptual Challenges at High Energy, Acceleration and Complexity (Springer, New York, Dordrecht, Heidelberg, London, 2011).

  19. T.S. Biró, P. Ván, G.G. Barnaföldi, K. Ürmössy, Entropy 16, 6497 (2014).

    Article  ADS  Google Scholar 

  20. Q.A. Wang, Eur. Phys. J. B 26, 357 (2002).

    ADS  Google Scholar 

  21. S. Abe, Phys. Lett. A 263, 424 (1999) 267.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A.S. Parvan, T.S. Biró, Phys. Lett. A 340, 375 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A.S. Parvan, Phys. Lett. A 350, 331 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A.S. Parvan, Phys. Lett. A 360, 26 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. O.J.E. Maroney, Phys. Rev. E 80, 061141 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Plastino, A.R. Plastino, Phys. Lett. A 226, 257 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. G. Kaniadakis, Phys. Rev. E 72, 036108 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  28. E.M.F. Curado, C. Tsallis, J. Phys. A 24, L69 (1991) 24.

    Article  MathSciNet  ADS  Google Scholar 

  29. I. Prigogine, D. Kondepudi, Modern Thermodynamics: From Heat Engines to Dissipative Structures (John Wiley & Sons, Chichester, 1998).

  30. I.A. Kvasnikov, Thermodynamics and Statistical Mechanics: The Equilibrium Theory (Moscow State University Publishing, Moscow, 1991).

  31. R. Botet, M. Płoszajczak, J.A. González, Phys. Rev. E 65, 015103(R) (2002).

    Article  ADS  Google Scholar 

  32. R. Botet, M. Płoszajczak, K.K. Gudima, A.S. Parvan, V.D. Toneev, Physica A 344, 403 (2004).

    Article  ADS  Google Scholar 

  33. T.S. Biró, K. Ürmössy, Z. Schram, J. Phys. G: Nucl. Part. Phys. 37, 094027 (2010).

    Article  ADS  Google Scholar 

  34. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006).

    Article  ADS  Google Scholar 

  35. F. Becattini, M. Gazdzicki, A. Keränen, J. Manninen, R. Stock, Phys. Rev. C 69, 024905 (2004).

    Article  ADS  Google Scholar 

  36. P. Braun-Munzinger, J. Stachel, C. Wetterich, Phys. Lett. B 596, 61 (2004).

    Article  ADS  Google Scholar 

  37. A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009).

    Article  ADS  Google Scholar 

  38. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012).

    Article  ADS  Google Scholar 

  39. A. Deppman, J. Phys. G: Nucl. Part. Phys. 41, 055108 (2014).

    Article  ADS  Google Scholar 

  40. A.M. Teweldeberhan, A.R. Plastino, H.G. Miller, Phys. Lett. A 343, 71 (2005).

    Article  ADS  MATH  Google Scholar 

  41. J.M. Conroy, H.G. Miller, A.R. Plastino, Phys. Lett. A 374, 4581 (2010).

    Article  ADS  MATH  Google Scholar 

  42. V.I. Arnold, Mathematical methods of classical mechanics (Springer-Verlag, New York, 1989).

  43. M.L. Krasnov, G.I. Makarenko, A.I. Kiseliov, Calculus of Variations: Problems and Exercises with Detailed Solutions (URSS Publisher, Moscow, 2002).

  44. E.T. Jaynes, Statistical Physics, edited by W.K. Ford (Benjamin, New York, 1963).

  45. T. Yamano, Eur. Phys. J. B 18, 103 (2000).

    Article  ADS  Google Scholar 

  46. E. Vives, A. Planes, Phys. Rev. Lett. 88, 020601 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Abramowitz, I. Stegun, Handbook of Mathematics Functions, Nat. Bur. Stand. Appl. Math. Ser., Vol. 55 (U.S. Govt. Printing Office, Washington, DC, 1965).

  48. J. Woods Halley, Statistical Mechanics: From First Principles to Macroscopic Phenomena (Cambridge University Press, 2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Parvan.

Additional information

Communicated by T.S. Biro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvan, A.S. Self-consistent thermodynamics for the Tsallis statistics in the grand canonical ensemble: Nonrelativistic hadron gas. Eur. Phys. J. A 51, 108 (2015). https://doi.org/10.1140/epja/i2015-15108-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15108-x

Keywords

Navigation