Skip to main content
Log in

Gamma decay of pygmy states from inelastic scattering of ions

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

An overview of relevant results on the study of 1 states focusing on their excitation with nuclear probes is given. Results obtained for the 90Zr , 124Sn , and 208Pb nuclei using the (17O,17O′γ) reaction are compared with available data obtained with the (γ, γ′, and (p, p′) reactions. These comparisons allow to learn on the nature of the populated states, particularly the E1 states, whose isospin character is presently poorly known. The DWBA description of the data is discussed in terms of different form factors, standard collective form factor and form factors obtained by folding microscopically calculated transition densities. The relevant aspects related to the used theoretical approach are also presented. The main objective of the analyses is the extraction of the values of the fraction of the energy weighted sum rule strength for the isoscalar dipole excitation. For completeness, in all cases, the DWBA analysis was made also for the excitations of 2+ and 3 states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Savran et al., Prog. Part. Nucl. Phys. 70, 210 (2013)

    Article  ADS  Google Scholar 

  2. I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)

    Article  ADS  Google Scholar 

  3. P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)

    Article  ADS  Google Scholar 

  4. O. Wieland et al., Phys. Rev. Lett. 102, 092502 (2009)

    Article  ADS  Google Scholar 

  5. D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)

    Article  ADS  Google Scholar 

  6. J. Gibelin et al., Phys. Rev. Lett. 101, 212503 (2008)

    Article  ADS  Google Scholar 

  7. A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)

    Article  ADS  Google Scholar 

  8. U. Kneissl, H.H. Pitz, A. Zilges, Prog. Part. Nucl. Phys. 37, 349 (1996)

    Article  ADS  Google Scholar 

  9. S. Goriely, Phys. Lett. B 436, 10 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Goriely, E. Khan, M. Samyn, Nucl. Phys. A 739, 331 (2004)

    Article  ADS  Google Scholar 

  11. E. Litvinova et al., Phys. Rev. C 79, 054312 (2009)

    Article  ADS  Google Scholar 

  12. B. Alex Brown, Phys. Rev. Lett. 85, 5296 (2000)

    Article  ADS  Google Scholar 

  13. R.J. Furnstahl, Nucl. Phys. A 706, 85 (2002)

    Article  ADS  Google Scholar 

  14. J. Piekarewicz et al., Phys. Rev. C 85, 041302 (2012)

    Article  ADS  Google Scholar 

  15. P.-G. Reinhard, W. Nazarewicz, Phys. Rev. C 81, 051303 (2010)

    Article  ADS  Google Scholar 

  16. J. Piekarewicz, Phys. Rev. C 83, 034319 (2011)

    Article  ADS  Google Scholar 

  17. J. Piekarewicz, Phys. Rev. C 73, 044325 (2006)

    Article  ADS  Google Scholar 

  18. A. Klimkiewicz et al., Phys. Rev. C 76, 051603 (2007)

    Article  ADS  Google Scholar 

  19. N. Tsoneva, H. Lenske, Phys. Rev. C 77, 024321 (2008)

    Article  ADS  Google Scholar 

  20. A. Carbone et al., Phys. Rev. C 81, 041301 (2010)

    Article  ADS  Google Scholar 

  21. D. Vretenar et al., Phys. Rev. C 85, 044317 (2012)

    Article  ADS  Google Scholar 

  22. J.M. Lattimer et al., Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)

    Article  ADS  Google Scholar 

  23. T. Hashimoto, arXiv:1503.08321v1 [nucl-ex] (2015)

  24. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)

    Article  ADS  Google Scholar 

  25. C.M. Tarbert et al., Phys. Rev. Lett. 112, 242502 (2014)

    Article  ADS  Google Scholar 

  26. N. Paar et al., Rep. Prog. Phys. 70, 691 (2007)

    Article  ADS  Google Scholar 

  27. I. Hamamoto, H. Sagawa, Phys. Rev. C 53, R1492 (1996)

    Article  ADS  Google Scholar 

  28. F. Catara et al., Nucl. Phys. A 624, 449 (1997)

    Article  ADS  Google Scholar 

  29. E.G. Lanza et al., Phys. Rev. C 79, 054615 (2009)

    Article  ADS  Google Scholar 

  30. E.G. Lanza et al., Phys. Rev. C 84, 064602 (2011)

    Article  ADS  Google Scholar 

  31. T. Inakura et al., Phys. Rev. C 84, 021302 (2011)

    Article  ADS  Google Scholar 

  32. E. Yüksel et al., Nucl. Phys. A 877, 35 (2012)

    Article  ADS  Google Scholar 

  33. X. Roca-Maza et al., Phys. Rev. C 85, 024601 (2012)

    Article  ADS  Google Scholar 

  34. J. Terasaki, J. Engel, Phys. Rev. C 74, 044301 (2006)

    Article  ADS  Google Scholar 

  35. K. Yoshida, N. Van Giai, Phys. Rev. C 78, 064316 (2008)

    Article  ADS  Google Scholar 

  36. M. Martini et al., Phys. Rev. C 83, 064309 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  37. H. Hergert et al., Phys. Rev. C 83, 064317 (2011)

    Article  ADS  Google Scholar 

  38. P. Papakonstantinou et al., Phys. Lett. B 709, 270 (2012)

    Article  ADS  Google Scholar 

  39. D. Gambacurta et al., Phys. Rev. C 84, 034301 (2011)

    Article  ADS  Google Scholar 

  40. M. Tohyama, T. Nakatsukasa, Phys. Rev. C 85, 031302 (2012)

    Article  ADS  Google Scholar 

  41. T. Hartmann et al., Phys. Rev. Lett. 93, 192501 (2004)

    Article  ADS  Google Scholar 

  42. N. Tsoneva et al., Nucl. Phys. A 731, 273 (2004)

    Article  ADS  Google Scholar 

  43. J. Liang et al., Phys. Rev. C 75, 054320 (2007)

    Article  ADS  Google Scholar 

  44. D. Vretenar et al., Nucl. Phys. A 692, 496 (2001)

    Article  ADS  Google Scholar 

  45. N. Paar et al., Phys. Rev. C 67, 034312 (2003)

    Article  ADS  Google Scholar 

  46. N. Paar et al., Phys. Rev. Lett. 103, 032502 (2009)

    Article  ADS  Google Scholar 

  47. D. Peña et al., Phys. Rev. C 79, 034311 (2009)

    Article  Google Scholar 

  48. E. Litvinova et al., Phys. Rev. C 78, 014312 (2008)

    Article  ADS  Google Scholar 

  49. E. Litvinova et al., Phys. Rev. Lett. 105, 022502 (2010)

    Article  ADS  Google Scholar 

  50. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  51. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, 1983)

  52. G. Bertsch, J. Horysowicz, H. McManus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  53. Dao T. Khoa, W. von Oertzen, Phys. Lett. B 342, 6 (1995)

    Article  ADS  Google Scholar 

  54. Dao T. Khoa et al., Phys. Rev. C 56, 954 (1997)

    Article  ADS  Google Scholar 

  55. T.J. Deal, Nucl. Phys. A 217, 210 (1973)

    Article  ADS  Google Scholar 

  56. M.N. Harakeh, A.E.L. Dieperink, Phys. Rev. C 23, 2329 (1981)

    Article  ADS  Google Scholar 

  57. E.G. Lanza et al., Phys. Rev. C, 054607 (2015)

  58. P.D. Kunz, DWUCK4 code for DWBA at http://spot.colorado.edu/kunz/DWBA.html

  59. T.D. Poelhekken et al., Phys. Lett. B 278, 423 (1992)

    Article  ADS  Google Scholar 

  60. K. Govaert et al., Phys. Rev. C 57, 2229 (1998)

    Article  ADS  Google Scholar 

  61. J. Endres et al., Phys. Rev. C 85, 064331 (2012)

    Article  ADS  Google Scholar 

  62. V. Derya et al., Phys. Lett. B 730, 288 (2014)

    Article  ADS  Google Scholar 

  63. V. Derya et al., J. Phys. Conf. Ser. 366, 012012 (2012)

    Article  ADS  Google Scholar 

  64. J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010)

    Article  ADS  Google Scholar 

  65. J. Endres et al., Phys. Rev. C 80, 034302 (2009)

    Article  ADS  Google Scholar 

  66. D. Savran et al., Phys. Rev. Lett. 97, 172502 (2006)

    Article  ADS  Google Scholar 

  67. P. Decowski, H. Morsch, W. Benenson, Phys. Lett. B 101, 147 (1981)

    Article  ADS  Google Scholar 

  68. E.G. Lanza et al., Phys. Rev. C 89, 041601 (2014)

    Article  ADS  Google Scholar 

  69. A. Bracco, F.C.L. Crespi, EPJ Web of Conferences 38, 03001 (2012)

    Article  Google Scholar 

  70. F.C.L. Crespi et al., Phys. Rev. Lett. 113, 012501 (2014)

    Article  ADS  Google Scholar 

  71. L. Pellegri et al., Phys. Lett. B 738, 519 (2014)

    Article  ADS  Google Scholar 

  72. M. Krzysiek et al., Phys. Scr. 89, 054016 (2014)

    Article  ADS  Google Scholar 

  73. F.C.L. Crespi et al., Phys. Rev. C 91, 024323 (2015)

    Article  ADS  Google Scholar 

  74. J.R. Beene et al., Phys. Rev. C 39, 1307 (1989)

    Article  ADS  Google Scholar 

  75. J.R. Beene et al., Phys. Rev. C 41, 920 (1990)

    Article  ADS  Google Scholar 

  76. J. Barrette et al., Phys. Lett. B 209, 182 (1988)

    Article  ADS  Google Scholar 

  77. J.R. Beene et al., Nucl. Phys. A 482, 407 (1988)

    Article  ADS  Google Scholar 

  78. D.J. Horen et al., Phys. Rev. C 44, 128 (1991)

    Article  ADS  Google Scholar 

  79. A. Bracco et al., Nucl. Phys. A 482, 421c (1988)

    Article  ADS  Google Scholar 

  80. S. Landowne et al., Phys. Lett. B 90, 389 (2014)

    Article  ADS  Google Scholar 

  81. A.M. van der Berg et al., Nucl. Phys. A 578, 238 (1994)

    Article  ADS  Google Scholar 

  82. J. Blomgren et al., Nucl. Phys. A 578, 239 (1994)

    Article  Google Scholar 

  83. P. Heckman et al., Phys. Lett. B 555, 43 (2003)

    Article  ADS  Google Scholar 

  84. C. Cabot, Conference Proceedings Of the XXIX Winter Meeting on Nuclear Physics in Bormio (Italy), Jan. 14--19, 1991

  85. R. Liguori Neto et al., Nucl. Phys. A 560, 733 (1993)

    Article  ADS  Google Scholar 

  86. R.L. Auble et al., Phys. Rev. C 41, 2620 (1990)

    Article  ADS  Google Scholar 

  87. D. Mengoni et al., Nucl. Instum. Methods Phys. Res. A 764, 241 (2014)

    Article  ADS  Google Scholar 

  88. S. Akkoyun et al., Nucl. Instrum. Methods A 668, 26 (2012)

    Article  ADS  Google Scholar 

  89. A. Gadea et al., Nucl. Instrum. Methods A 654, 88 (2011)

    Article  ADS  Google Scholar 

  90. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  91. E. Farnea et al., Nucl. Instrum. Methods A 621, 331 (2010)

    Article  ADS  Google Scholar 

  92. N. Ryezayeva et al., Phys. Rev. Lett. 89, 272502 (2002)

    Article  ADS  Google Scholar 

  93. T. Shizuma et al., Phys. Rev. C 78, 061303 (2008)

    Article  ADS  Google Scholar 

  94. L. Pellegri et al., Phys. Rev. C 92, 014330 (2015)

    Article  ADS  Google Scholar 

  95. RF Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford 1990)

  96. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  97. http://www.fresco.org.uk/index.htm

  98. T.P. Sjoreen et al., Phys. Rev. C 29, 1370 (1984)

    Article  ADS  Google Scholar 

  99. J. Heisenberg et al., Phys. Rev. C 29, 97 (1984)

    Article  ADS  Google Scholar 

  100. N. Tsoneva, H. Lenske, Phys. Lett. B 695, 174 (2011)

    Article  ADS  Google Scholar 

  101. R. Schwengner et al., Phys. Rev. C 78, 064314 (2008)

    Article  ADS  Google Scholar 

  102. C. Iwamoto et al., Phys. Rev. Lett. 108, 262501 (2012)

    Article  ADS  Google Scholar 

  103. A. Krugmann et al., EPJ Web of Conferences 66, 02060 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bracco.

Additional information

Communicated by N. Alamanos

Angela Bracco is a full Professor at the University of Milano and she is associated to INFN. Her research experience is in nuclear structure and she obtained relevant results on the giant dipole resonance at zero and finite temperature. She was involved in the realization of complex detection system for gammaray built in European collaboration (EUROBALL, RISING and AGATA). In 2005–2011 she chaired the Nuclear Physics board of INFN and presently she is the chair of NuPECC (the European expert committee for Nuclear science).

Edoardo G. Lanza is a theoretical nuclear physicist. He is a senior researcher of the Italian Institute for Nuclear Physics (INFN). He graduated at Catania University and received the doctoral degree at the Heidelberg University. He has been awarded a senior Marie Curie Fellowship in 1989. He has been working in heavy-ion physics and in quantum chaos. Recently his main interest has been devoted to collective states in nuclei with neutron excess with a particular attention to the so-called pygmy dipole resonance.

Fabio Crespi received his doctoral degree from the Università degli Studi di Milano in 2008. His research activity focuses on the experimental study via gamma spectroscopy of nuclear properties, in particular collective excitations, at extreme conditions of temperature, angular momentum and isospin. He has been strongly involved in experiments using stable and radioactive beams at several facilities worldwide (e.g., LNLINFN, GANIL, GSI, RIKEN). He had responsabilities in experiments made with the AGATA array, constructed as a large European collaboration. An important part of his activity is devoted to R&D for detectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracco, A., Crespi, F.C.L. & Lanza, E.G. Gamma decay of pygmy states from inelastic scattering of ions. Eur. Phys. J. A 51, 99 (2015). https://doi.org/10.1140/epja/i2015-15099-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15099-6

Keywords

Navigation