Skip to main content
Log in

Spallation reactions: A successful interplay between modeling and applications

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200MeV deuterons and 400MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. In the same year, R. Serber described the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a workshop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.M. Brobeck et al., Phys. Rev. 71, 449 (1947).

    ADS  Google Scholar 

  2. J. Kaplan, Phys. Rev. 72, 738 (1947).

    Google Scholar 

  3. R. Serber, Phys. Rev. 72, 1114 (1947).

    ADS  Google Scholar 

  4. P.R. O'connor, G.T. Seaborg, Phys. Rev. 74, 1189 (1948).

    ADS  Google Scholar 

  5. G.T. Seaborg, I. Perlman, Rev. Mod. Phys. 20, 585 (1948).

    ADS  Google Scholar 

  6. D. Mancusi et al., Rev. Mod. Phys. 20, 585 (2011).

    Google Scholar 

  7. K. Ammon et al., Meteorit. Planet. Sci. 44, 485 (2009).

    ADS  Google Scholar 

  8. S.G. Mashnik, arXiv:astro-ph/0008382v1 (2000).

  9. SINQ, http://www.psi.ch/sinq/.

  10. ISIS, http://www.isis.stfc.ac.uk.

  11. SNS, http://neutrons.ornl.gov.

  12. M. Futakawa et al., Neutron News 22, 15 (2011) JSNS, http://j-parc.jp/MatLife/en/index.html.

    Google Scholar 

  13. ESS, http://europeanspallationsource.se.

  14. CSNS, http://csns.ihep.ac.cn/english/index.htm.

  15. D. Filges, F. Goldenbaum, Handbook of Spallation Research: Theory, Experiments and Applications (John Wiley & Sons, 2010).

  16. Yu.A. Korovin et al., Nucl. Instrum. Methods A 624, 20 (2010).

    ADS  Google Scholar 

  17. Y. Watanabe et al., J. Korean Phys. Soc. 59, 1040 (2011) DOI:10.3938/jkps.59.1040.

    Google Scholar 

  18. J. Aichelin, Phys. Rep. 202, 233 (1991).

    ADS  Google Scholar 

  19. V.E. Bunakov, G.V. Matvejev, Z. Phys. A 322, 511 (1985).

    ADS  Google Scholar 

  20. J. Cugnon, Few-Body Sys. 53, 143 (2012).

    ADS  Google Scholar 

  21. E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933).

    ADS  Google Scholar 

  22. N. Metropolis et al., Phys. Rev. 110, 185 (1958).

    MathSciNet  ADS  Google Scholar 

  23. N. Metropolis et al., Phys. Rev. 110, 204 (1958).

    MathSciNet  ADS  Google Scholar 

  24. M.L. Goldberger, Phys. Rev. 74, 1269 (1948).

    ADS  Google Scholar 

  25. H.W. Bertini, Phys. Rev. 131, 1801 (1963).

    ADS  Google Scholar 

  26. J. Cugnon et al., Phys. Rev. C 56, 2431 (1997).

    ADS  Google Scholar 

  27. A. Boudard et al., Phys. Rev. C 66, 044615 (2002).

    ADS  Google Scholar 

  28. A. Boudard et al., Phys. Rev. C 87, 014606 (2013).

    ADS  Google Scholar 

  29. S.G. Mashnik, CEM03.03 and LAQGSM03.03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes, LANL Report LA-UR-08-2931, arXiv:0805.0751v2 [nucl-th] (2008).

  30. J.J. Griffin, Phys. Rev. Lett. 17, 478 (1966).

    ADS  Google Scholar 

  31. J. Cugnon, P. Henrotte, Eur. Phys. J. A 16, 393 (2005).

    ADS  Google Scholar 

  32. S. Hashimoto et al., Nucl. Instrum. Methods B 333, 27 (2014).

    ADS  Google Scholar 

  33. A.K. Weaver et al., Phys. Med. Biol. 18, 64 (1973).

    Google Scholar 

  34. S. Leray et al., Phys. Rev. C 65, 044621 (2002).

    ADS  Google Scholar 

  35. C. Villagrasa-Canton et al., Phys. Rev. C 75, 044603 (2007).

    ADS  Google Scholar 

  36. P. Napolitani et al., Phys. Rev. C 70, 054607 (2004).

    ADS  Google Scholar 

  37. T. Enqvist et al., Nucl. Phys. A 686, 481 (2001).

    MathSciNet  ADS  Google Scholar 

  38. V. Weisskopf, Phys. Rev. 52, 295 (1937).

    ADS  Google Scholar 

  39. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965).

    ADS  Google Scholar 

  40. A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 255 (1975).

    Google Scholar 

  41. K.H. Schmidt et al., Z. Phys. A 308, 215 (1982).

    ADS  Google Scholar 

  42. A.V. Ignatyuk et al., Sov. J. Nucl. Phys. 21, 612 (1976).

    Google Scholar 

  43. J. Toke, W.J. Swiatecki, Nucl. Phys. A 372, 141 (1981).

    ADS  Google Scholar 

  44. C. Guet et al., Phys. Lett. B 205, 427 (1988).

    ADS  Google Scholar 

  45. S. Shlomo et J.B. Natowitz, Phys. Rev. C 44, 2878 (1991).

    ADS  Google Scholar 

  46. R. Junghans et al., Nucl. Phys. A 629, 635 (1998).

    ADS  Google Scholar 

  47. V. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940).

    ADS  Google Scholar 

  48. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952).

    MATH  ADS  Google Scholar 

  49. J.R. Huizenga, G. Igo, Nucl. Phys. 29, 462 (1962).

    Google Scholar 

  50. R. Bass, Nucl. Phys. A 23, 45 (1974).

    ADS  Google Scholar 

  51. D. Filges, Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions (2008), www-nds.iaea.org/publications/indc/indc-nds-0530/.

  52. The Evaluated Structure Data File (ENSDF) maintained by the National Nuclear Data Center (NNDC), Brookhaven National Laboratory, http://www.nndc.bnl.gov/.

  53. T. Ogawa et al., Nucl. Instrum. Methods B 325, 35 (2014).

    ADS  Google Scholar 

  54. A.J. Sierk, Phys. Rev. C 33, 2039 (1986).

    ADS  Google Scholar 

  55. A.S. Iljinov, M.V. Mebel, Nucl. Phys. A 543, 517 (1992).

    ADS  Google Scholar 

  56. B. Jurado et al., Nucl. Phys. A 747, 14 (2005).

    ADS  Google Scholar 

  57. J. Benlliure et al., Nucl. Phys. A 628, 458 (1998).

    ADS  Google Scholar 

  58. F. Atchison, Spallation and fission in heavy metal nuclei under medium energy proton bombardment Meeting on Targets for neutron beam spallation sources, Edited by G. Bauer, KFA Jülich Germany, Jül-conf-34 (1980).

  59. S. Furihata, The Gem Code - A simulation Program for the Evaporation and Fission Process of an Excited Nucleus, JAERI-Data/Code 2001-015 (2001).

  60. L.G. Moretto, G.J. Wozniak, The Decay of Hot Nuclei, LBL-26207, DE89 J06609 (1988).

  61. J.P. Bondorf, J. Phys. 37, C5-195 (1976).

    Google Scholar 

  62. R.K. Su et al., Phys. Rev. C 37, 1770 (1988).

    ADS  Google Scholar 

  63. J.P. Bondorf et al., Phys. Rep. 257, 133 (1995).

    ADS  Google Scholar 

  64. A.S. Botvina et al., Phys. Rev. E 62, R64 (2000).

    ADS  Google Scholar 

  65. K.-H. Schmidt et al., Nucl. Phys. A 710, 157 (2002).

    ADS  Google Scholar 

  66. J.B. Natowitz et al., Phys. Rev. C 65, 034618 (2002).

    ADS  Google Scholar 

  67. T. Enqvist et al., Nucl. Phys. A 658, 47 (1999).

    ADS  Google Scholar 

  68. N. Buyukcizmeci et al., Eur. Phys. J. A 25, 57 (2005).

    Google Scholar 

  69. G.A. Souliotis et al., Phys. Rev. C 75, 011601R (2007).

    ADS  Google Scholar 

  70. A.S. Botvina et al., Phys. Rev. C 74, 044609 (2006).

    ADS  Google Scholar 

  71. E. Fermi, Prog. Theor. Phys. 5, 570 (1950).

    MathSciNet  ADS  Google Scholar 

  72. M. Épherre, É. Gradsztajn, J. Phys. 28, 745 (1967).

    Google Scholar 

  73. B.V. Carlson et al., J. Phys. Conf. Ser. 312, 082017 (2011).

    ADS  Google Scholar 

  74. M. Salvatores, É. Fort, CLEFS CEA N. 45, pages 22–29 (2001) (in French).

  75. R.E. Prael, User guide to LCS: the LAHET code system, LA-UR-89-3014 (1989).

  76. R.E. Prael, Release Notes for LAHET Code System with LAHET Version 3.16 (2001).

  77. R.C. Reedy, J. Masarik, Lunar. Planet. Sci. XXV, 1119 (1994).

    ADS  Google Scholar 

  78. J. Masarik, J. Beer, J. Geo. Res. 104, 12099 (1999).

    ADS  Google Scholar 

  79. T.W. Armstrong, K.C. Chandler, Nucl. Sci. Eng. 49, 110 (1972).

    Google Scholar 

  80. K.C. Chandler, T.W. Armstrong, Operating instructions for the high-energy nucleon-meson transport code hetc, ORNL-4744 (1972).

  81. T.A. Gabriel, The high energy transport code HETC, ORNL/TM-9727 (1985).

  82. W.A. Coleman, T.W. Armstrong, Nucl. Sci. Eng. 43, 353 (1971).

    Google Scholar 

  83. J.F. Briesmeister, MCNP - A general Monte Carlo Code for Neutron and Photon Transport, LA-7396-M Revision 2 (1986).

  84. J.-C. David, Spallation Neutron Production on Thick Target at Saturne, in Proceedings of the International Workshop on Nuclear Data for the Transmutation of Nuclear Waste - GSI-Darmstadt, Germany - September 1-5, 2003, ISSN 3-00-012276-1.

  85. J.S. Hendricks, MCNPX extensions version 2.5.0, LA-UR-05-2675 (2005).

  86. Geant4 collaboration, Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).

    ADS  Google Scholar 

  87. P. Kaitaniemi et al., Prog. Nucl. Sci. Tech. 2, 788 (2011).

    Google Scholar 

  88. D. Mancusi et al., Phys. Rev. C 90, 054602 (2014).

    ADS  Google Scholar 

  89. T. Sato et al., J. Nucl. Sci. Technol. 50, 913 (2013).

    Google Scholar 

  90. B. Brun, GEANT3 User's guide, Rep. DD/EE/84-1, Eur. Org. for Nucl. Res., Geneva (1987).

  91. J.F. Briesmeister, MCNP - A general Monte Carlo N-particle transport code version 4A, LA-12625-M (1993).

  92. G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007).

    ADS  Google Scholar 

  93. A. Ferrari, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.

  94. N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628 (1995).

  95. O.E. Krivosheev, N.V. Mokhov, MARS Code Status, in Proc. Monte Carlo 2000 Conf., Lisbon, October 23-26, 2000, Fermilab-Conf-00/181 (2000) p. 943.

  96. N.V. Mokhov, Status of MARS Code, Fermilab-Conf-03/053 (2003).

  97. N.V. Mokhov, Recent Enhancements to the MARS15 Code, Fermilab-Conf-04/053 (2004), http://www-ap.fnal.gov/MARS/.

  98. R.E. Prael, M. Bozoian, Adaptation of the Multistage Pre-equilibrium Model for the Monte Carlo method, LA-UR-88-238 (1988).

  99. P.A. Aarnio, Enhancements to the FLUKA86 program (FLUKA87), CERN/TIS-RP/190 (1987).

  100. J. Barish, HETFIS: High-Energy Nucleon-Meson Transport Code with Fission, ORNL/TM-7882 (1981).

  101. S.G. Mashnik et al., J. Phys. Conf. Ser. 41, 340 (2006).

    ADS  Google Scholar 

  102. S.G. Mashnik, CEM03.01 User Manual, LANL Report LA-UR-05-7321 (2005), RSICC Code Package PSR-532, http://www-rsicc.ornl.gov/codes/psr/psr5/psr532.html and http://www.nea.fr/abs/html/psr-0532.html.

  103. S. Furihata, Nucl. Instrum. Methods Phys. Res. B 171, 251 (2000).

    ADS  Google Scholar 

  104. Y. Nara et al., Phys. Rev. C 61, 024901 (2000).

    ADS  Google Scholar 

  105. K. Niita et al., Phys. Rev. C 52, 2620 (1995).

    ADS  Google Scholar 

  106. I. Dostrovsky et al., Phys. Rev. 116, 683 (1959).

    ADS  Google Scholar 

  107. K.K. Gudima et al., Nucl. Phys. A 401, 329 (1983).

    ADS  Google Scholar 

  108. A.S. Botvina A.S. et al., Nucl. Phys. A 475, 663 (1987).

    ADS  Google Scholar 

  109. M. Blann, Phys. Rev. Lett. 28, 757 (1972).

    ADS  Google Scholar 

  110. L. Bertocchi, Nuovo Cimento A 11, 45 (1972) and references therein.

    ADS  Google Scholar 

  111. H. Sorge, Phys. Rev. C 52, 3291 (1995).

    ADS  Google Scholar 

  112. J. Ranft, Phys. Rev. D 51, 54 (1995).

    ADS  Google Scholar 

  113. I. Kodeli, SINBAD Shielding Benchmark Experiments Status and Planned Activities, in The American Nuclear Society's 14th Biennial Topical Meeting of the Radiation Protection and Shielding Division, Carlsbad New Mexico, USA, April 3-6, 2006, https://www.oecd-nea.org/science/wprs/shielding/sinbad/.

  114. M. Blann, International Code Comparison for Intermediate Energy Nuclear Data, NEA/OECD, NSC/DOC(94)-2, Paris, 1993.

  115. R. Michel, P. Nagel, International Codes and Model Intercomparison for Intermediate Energy Activation Yields, NEA/OECD, NSC/DOC(97)-1, Paris, 1997.

  116. D. Filges, Thick Target Benchmark for Lead and Tungsten, NEA/OECD, NSC/DOC(95) 2, Paris, 1995.

  117. J.-P. Meulders, High and Intermediate energy Nuclear Data for Accelerator-driven Systems, HINDAS final report (2005) http://www.theo.phys.ulg.ac.be/~cugnon/Final_Scientific_Report_HINDAS.pdf.

  118. J.-P. Meulders, Physical Aspects of Lead as a Neutron Producing Target for Accelerator Transmutation Devices Final Report on the Concerted Action: Physical Aspects of Lead as a Neutron Producing Target for Accelerator Transmutation Devices, 2001, European Atomic Energy Commission, Luxembourg.

  119. E. González-Romero, NUDATRA/EUROTRANS nuclear data for nuclear waste transmutation, in Proceedings of the Workshop on Technology and Components of Accelerator-driven Systems, Karlsruhe, Germany, 15-17 March 2010, ISBN 978-92-64-11727-3 OECD 2011.

  120. E. Gonzalez, Final Report of the project ANDES (Accurate Nuclear Data for nuclear Energy Sustainability), http://www.andes-nd.eu/system/files/docs/ANDES_FinalReport_v8x.pdf.

  121. A. Letourneau et al., Nucl. Phys. A 712, 133 (2002).

    ADS  Google Scholar 

  122. A. Boudard, Comparison of INCL4 with Experiments, in Proceedings of the International Workshop on Nuclear Data for the Transmutation of Nuclear Waste, GSI-Darmstadt, Germany, September 1-5, 2003, edited by Aleksandra Kelic, Karl-Heinz Schmidt ISBN 3-00-012276-1.

  123. C.M. Herbach, FZJ Juelich annual report (2001).

  124. C.M. Herbach, in Proc. of the SARE-5meeting, OECD, Paris, July 2000.

  125. J. Taieb et al., Nucl. Phys. A 724, 413 (2003).

    ADS  Google Scholar 

  126. M. Bernas et al., Nucl. Phys. A 725, 213 (2003).

    ADS  Google Scholar 

  127. Th. Aoust, J. Cugnon, Eur. Phys. J. A 21, 79 (2004).

    ADS  Google Scholar 

  128. Th. Aoust, J. Cugnon, Phys. Rev. C 74, 064607 (2006).

    ADS  Google Scholar 

  129. J. Cugnon et al., J. Phys. Conf. Ser. 312, 082019 (2011).

    ADS  Google Scholar 

  130. A. Bubak et al., Phys. Rev. C 76, 014618 (2007).

    ADS  Google Scholar 

  131. A. Budzanowski et al., Phys. Rev. C 78, 024603 (2008).

    ADS  Google Scholar 

  132. Y. Ayyad et al., Phys. Rev. C 89, 054610 (2014).

    ADS  Google Scholar 

  133. J.-C. David, Report on the predicting capabilities of the standard simulation tools in the 150–600MeV energy range, FP7-ANDES, WP4 Deliverable D4.1.

  134. R.E.L. Green, R.G. Korteling, Phys. Rev. C 22, 1594 (1980).

    ADS  Google Scholar 

  135. J. Cugnon, Report on the validation of the simulation tools developed in Task 4.4 and assessment of the expected reduction of uncertainty on key parameters of the ADS, FP7-ANDES, WP4 Deliverable D4.6.

  136. J.-C. David et al., Eur. Phys. J. A 49, 29 (2013).

    ADS  Google Scholar 

  137. D. Mancusi et al., Phys. Rev. C 91, 034602 (2015).

    ADS  Google Scholar 

  138. B. Rapp, Benchmark calculations on particle production within the EURISOL DS project, EURISOL DS/Task5/TN-06-04, 2006.

  139. J.-C. David, Benchmark calculations on residue production within the EURISOL-DS project.

  140. J.-C. David, Benchmark calculations on residue production within the EURISOL-DS project.

  141. M. Felcini, A. Ferrari, Validation of FLUKA calculated cross-sections for radioisotope production in proton-on-target collisions at proton energies around 1GeV, EURISOL DS/Task 5/TN-06-01.

  142. L. Pienkowski, FLUKA simulation for NESSI experiment, EURISOL DS/Task5/TN-06-05.

  143. D. Ene, High-energy neutron attenuation in iron and concrete: Verification of FLUKA Monte Carlo code by comparison with HIMAC experimental results, EURISOL DS/Task5/TN-06-14.

  144. D. Ene, Layout of the EURISOL post-accelerator, CEA Saclay Internal report: IRFU-09-109 - (2009) EURISOL DS Technical Report 05-25-2009-0036.

  145. N. Otuka et al., Nucl. Data Sheets 120, 272 (2014) http://www-nds.iaea.org/exfor/.

    ADS  Google Scholar 

  146. A. Koning, A. Mengoni, Quality Improvement of the EXFOR database, NEA/NSC/WPEC/DOC(2010)428, OECD 2011.

  147. MCNPX User's Manual Version 2.6.0, April 2008, edited by Denise B. Pelowitz, LA-CP-07-1473.

  148. http://phits.jaea.go.jp/Reference.html.

  149. P.G. Young, LA-12343-MS, Los Alamos National Laboratory, 1992.

  150. Y. Iwamoto et al., Nucl. Instrum. Methods A 690, 10 (2012).

    ADS  Google Scholar 

  151. H. Yashima et al., Radiat. Prot. Dosim. 161, 139 (2014) DOI:10.1093/rpd/nct334.

    Google Scholar 

  152. I. Leya, R. Michel, Nucl. Instrum. Methods B 269, 2487 (2011).

    ADS  Google Scholar 

  153. Y. Iwamoto et al., Phys. Rev. C 70, 024602 (2004).

    ADS  Google Scholar 

  154. S.G. Mashnik, User Manual for the Code CEM95 (1995) http://www.nea.fr/abs/html/iaea1247.html.

  155. S.G. Mashnik, A.J. Sierk, Proc. AccApp00, November 12-16, 2000, Washington, DC (USA), ANS, La Grange Park, IL, 2001, pp. 328-341, E-print: nucl-th/0011064.

  156. https://laws.lanl.gov/vhosts/mcnp.lanl.gov/references.shtml#mcnp6_refs_h.

  157. S. Mashnik, Validation and Verification of MCNP6 Against High-Energy Experimental Data and Calculations by Other Codes. I. The CEM Testing Primer, LA-UR-11-05129 (2011).

  158. S. Mashnik, Validation and Verification of MCNP6 Against High-Energy Experimental Data and Calculations by Other Codes. II. The LAQGSM Testing Primer, LA-UR-11-05627 (2011).

  159. S. Banerjee et al., J. Phys. Conf. Ser. 331, 032034 (2011).

    ADS  Google Scholar 

  160. L. Sihver et al., Acta Astronaut. 63, 865 (2008).

    ADS  Google Scholar 

  161. N.V. Mokhov, S.I. Striganov, FERMILAB-CONF-07-009-AD January 2007.

  162. S. Leray et al., J. Korean Phys. Soc. 59, 791 (2011) DOI:10.3938/jkps.59.791.

    Google Scholar 

  163. J.-C. David et al., Prog. Nucl. Sci. Tech. 2, 942 (2011).

    Google Scholar 

  164. E.L. Hjort et al., Phys. Rev. C 53, 237 (1996).

    ADS  Google Scholar 

  165. A. Guertin et al., Eur. Phys. J. A 23, 49 (2005).

    ADS  Google Scholar 

  166. M.M. Meier et al., Nucl. Sci. Eng. 110, 289 (1992).

    Google Scholar 

  167. W.B. Amian et al., Nucl. Sci. Eng. 112, 78 (1992).

    Google Scholar 

  168. K. Ishibashi et al., J. Nucl. Sci. Tech. 34, 529 (1997).

    Google Scholar 

  169. A. Letourneau et al., Nucl. Instrum. Methods B 170, 299 (2000).

    ADS  Google Scholar 

  170. J. Franz et al., Nucl. Phys. A 510, 774 (1990).

    ADS  Google Scholar 

  171. F.E. Bertrand et al., Phys. Rev. C 8, 1045 (1973).

    ADS  Google Scholar 

  172. A.A. Cowley et al., Phys. Rev. C 54, 778 (1996).

    ADS  Google Scholar 

  173. A. Budzanowski et al., Phys. Rev. C 80, 054604 (2009).

    ADS  Google Scholar 

  174. S.V. Fortsch et al., Phys. Rev. C 43, 691 (1991).

    ADS  Google Scholar 

  175. R.E. Chrien et al., Phys. Rev. C 21, 1014 (1980).

    ADS  Google Scholar 

  176. J.A. McGill et al., Phys. Rev. C 29, 204 (1984).

    ADS  Google Scholar 

  177. C.-M. Herbach et al., Nucl. Phys. A 765, 426 (2006).

    ADS  Google Scholar 

  178. D.R.F. Cochran et al., Phys. Rev. D 6, 3085 (1972).

    ADS  Google Scholar 

  179. H. Enyo et al., Phys. Lett. B 159, 1 (1985).

    ADS  Google Scholar 

  180. L. Audouin et al., Nucl. Phys. A 768, 1 (2006).

    ADS  Google Scholar 

  181. M.V. Ricciardi et al., Phys. Rev. C 73, 014607 (2006).

    ADS  Google Scholar 

  182. M. Bernas et al., Nucl. Phys. A 765, 197 (2006).

    ADS  Google Scholar 

  183. R. Michel et al., Nucl. Instrum. Methods B 103, 183 (1995).

    ADS  Google Scholar 

  184. Th. Schiekel et al., Nucl. Instrum. Methods B 114, 91 (1996).

    ADS  Google Scholar 

  185. R. Michel et al., J. Nucl. Sci. Technol. Suppl. 2, 242 (2002).

    Google Scholar 

  186. K. Ammon et al., Nucl. Instrum. Methods B 266, 2 (2008).

    ADS  Google Scholar 

  187. Yu.E. Titarenko et al., Phys. Rev. C 78, 034615 (2008).

    ADS  Google Scholar 

  188. M. Gloris et al., Nucl. Instrum. Methods A 463, 593 (2001).

    ADS  Google Scholar 

  189. I. Leya et al., Nucl. Instrum. Methods B 229, 1 (2005).

    ADS  Google Scholar 

  190. Yu.E. Titarenko et al., Nucl. Instrum. Methods A 562, 801 (2006).

    ADS  Google Scholar 

  191. D. Schumann et al., J. Phys. G 38, 065103 (2011).

    ADS  Google Scholar 

  192. R. Michel, The Concept of Intrinsic Discrepancy Applied to the Comparison of Experimental and Theoretical Data for Benchmarking Spallation Models, IAEA - Consultants' Meeting on Spallation Reactions (6-7 October) 2009, https://www-nds.iaea.org/spallations/2009cm/.

  193. Y. Sawada et al., Nucl. Instrum. Methods B 291, 38 (2012).

    ADS  Google Scholar 

  194. J.L. Ulmann, APT padionuclide production experiment technical report, LA-UR-95-3327 (1995).

  195. J. Janczyszyn, Benchmark on radionuclides production and heat generation rates in lead target exposed to 660MeV protons, AGH - University of Science and Technology (Krakow) - EC EUROTRANS-NUDATRA and IAEA CRP Report, 2011.

  196. W. Pohorecki, Thick lead target exposed to 660MeV protons: benchmark model on radioactive nuclides production and heat generation, and beyond, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2008) pp. 1225–1228 DOI: 10.1051/ndata:07745.

  197. MCNPX User's Manual Version 2.5.0, April 2005, edited by Denise B. Pelowitz, LA-CP-05-0369.

  198. A. Fasso, The physics models of FLUKA: status and recent developments, in Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California, ePrint hep-ph/0306267 (2003).

  199. A. Ferrari, FLUKA: A multi-particle transport code (Program version 2005), CERN-2005-010, SLAC- R-773, INFN-TC-05-11, 2005.

  200. J. Adam et al., Eur. Phys. J. A 23, 61 (2005) DOI:10.1140/epja/i2004-10031-y.

    ADS  Google Scholar 

  201. M. Majerle et al., J. Phys. Conf. Ser. 41, 331 (2006) DOI:10.1088/1742-6596/41/1/036.

    ADS  Google Scholar 

  202. M. Majerle et al., Nucl. Instrum. Methods A 580, 110 (2007).

    ADS  Google Scholar 

  203. A. Krása et al., Nucl. Instrum. Methods A 615, 70 (2010).

    ADS  Google Scholar 

  204. J. Oh et al., Prog. Nucl. Sci. Tech. 1, 85 (2011).

    Google Scholar 

  205. M.M. Meier et al., Nucl. Sci. Eng. 102, 310 (1989).

    Google Scholar 

  206. M.M. Meier et al., Nucl. Sci. Eng. 104, 339 (1990).

    Google Scholar 

  207. Y. Iwamoto et al., Nucl. Instrum. Methods A 620, 484 (2010).

    ADS  Google Scholar 

  208. M. Majerle, PhD Thesis, Czech Technical University in Prague (2009).

  209. S. Ménard, PhD Thesis, Université d'Orsay (1998).

  210. C. Varignon, PhD Thesis, Université de Caen (1999).

  211. S. Meigo et al., Nucl. Instrum. Methods A 431, 521 (1999).

    ADS  Google Scholar 

  212. A. YU Konobeyev, U. Fischer, Reference data for evaluation of gas production cross-sections in proton induced reactions at intermediate energies, KIT scientific reports 7660, DOI:10.5445/KSP/1000038463 (2014).

  213. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012) www.talys.eu/tendl-2013.html.

    ADS  Google Scholar 

  214. V.S. Barashenkov et al., At. Energ. 87, 283 (1999).

    Google Scholar 

  215. N.M. Larson, Compact Covariance Matrix, in ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6, BNL-NCS-4494505-Rev., cross-section Evaluation Working Group (Brookhaven National Laboratory, NY, USA, 2005) https://www.oecd-nea.org/dbdata/data/endf102.htm.

  216. Y. Watanabe, in Proceedings of the International Conference on Nuclear Data for Science and Technology (ND2004) (Santa Fe, USA, 2004) (2004) p. 326.

  217. K. Niita et al., Phys. Rev. C 52, 2620 (1995) JAERIData/Code 99-042 (1999).

    ADS  Google Scholar 

  218. Y. Nara et al., Phys. Rev. C 61, 024901 (2001).

    ADS  Google Scholar 

  219. M.B. Chadwick et al., Nucl. Data. Sheets C 107, 2931 (2006).

    ADS  Google Scholar 

  220. A.J. Koning, D. Rochman, TENDL-2009: TALYS-based Evaluated Nuclear Data Library, http://www.talys.eu/tendl-2009/.

  221. H. Takada et al., J. Nucl. Sci. Technol. 46, 589 (2009).

    Google Scholar 

  222. R. Trappitsch, I. Leya, Meteorit. Planet. Sci. 48, 195 (2013) DOI:10.1111/maps.12051.

    ADS  Google Scholar 

  223. J.A. Simpson, Annu. Rev. Nucl. Part. Sci. 33, 323 (1983).

    ADS  Google Scholar 

  224. I. Leya, J. Masarik, Meteorit. Planet. Sci. 44, 1061 (2009).

    ADS  Google Scholar 

  225. R.C. Reedy, Nucl. Instrum. Methods B 294, 470 (2013).

    ADS  Google Scholar 

  226. R.F. Carlson, At. Data Nucl. Data Tables 63, 93 (1996).

    ADS  Google Scholar 

  227. R.E. Prael, M.B. Chadwick, Applications of Evaluated Nuclear Data in the LAHET CODE, LA-UR-97-1744 (1997).

  228. B.C. Barashenkov, Cross-sections of Interactions of Particles and Nuclei with Nuclei (OlYal, Dubna, 1993) (in Russian).

  229. J.-C. David et al., Mem. Soc. Astron. Ital. 82, 909 (2011).

    ADS  Google Scholar 

  230. S.G. Mashnik, R.E. Prael, K.K. Gudima, LANL Report LA-UR-06-8652 (2007).

  231. S.G. Mashnik, LANL Report LA-UR-98-6000 (1998), Eprint: nucl-th/9812071, Proc. SARE-4, Knoxville, TN, September 13-16, 1998, edited by T.A. Gabriel (ORNL, 1999) pp. 151–162.

  232. S.G. Mashnik, L.M. Kerby, Nucl. Instrum. Methods A 764, 59 (2014).

    ADS  Google Scholar 

  233. E. Kim et al., Nucl. Sci. Eng. 129, 209 (1998).

    Google Scholar 

  234. E. Kim et al., Nucl. Sci. Tech. 36, 29 (1999).

    Google Scholar 

  235. J.M. Sisterson, Nucl. Instrum. Methods B 261, 993 (2007).

    ADS  Google Scholar 

  236. S. Sekimoto et al., J. Korean Phys. Soc. 59, 1916 (2011).

    Google Scholar 

  237. H. Yashima et al., Proc. Radiochim. Acta 1, 135 (2011).

    Google Scholar 

  238. K. Ninomiya et al., Proc. Radiochim. Acta 1, 123 (2011).

    Google Scholar 

  239. L.R. Veeser et al., Phys. Rev. C 16, 1792 (1977).

    ADS  Google Scholar 

  240. Y. Uno et al., Nucl. Sci. Eng. 122, 247 (1996).

    Google Scholar 

  241. A.J. Koning, D. Rochman, TENDL-2010: TALYS-based Evaluated Nuclear Data Library, ftp://ftp.nrg.eu/pub/www/talys/tendl2010/tendl2010.html.

  242. I. Leya et al., Meteorit. Planet. Sci. 35, 259 (2000).

    ADS  Google Scholar 

  243. A. Ingemarsson et al., Nucl. Phys. A 676, 3 (2000).

    ADS  Google Scholar 

  244. G. Igo, B.D. Wilkins, Phys. Rev. 131, 1251 (1963).

    ADS  Google Scholar 

  245. P.H. Stelson, F.K. McGowan, Phys. Rev. B 133, 911 (1964).

    ADS  Google Scholar 

  246. V.N. Levkovskij, Activation cross-sections for Nuclides of Average Masses ($A = 40-100$) by Protons and Alpha-Particles with Average Energies ($E = 10-50$MeV) (Inter Vesi, Moscow, 1991).

  247. A. Yadav et al., Phys. Rev. C 78, 044606 (2008).

    ADS  Google Scholar 

  248. S. Tanaka, J. Phys. Soc. Jpn. 15, 2159 (1960).

    ADS  Google Scholar 

  249. Yu.E. Titarenko et al., Phys. Rev. C 65, 064610 (2002).

    ADS  Google Scholar 

  250. J. Cornell, Y. Blumenfeld, G. Fortuna, Final report of the eurisol design study (2005-2009) (GANIL, 2009).

  251. D. Ene, In-target yields for RIB production: Part II: two stage target configuration, CEA Saclay Internal report: IRFU-09-87 (2009).

  252. S. Chabod et al., Eur. Phys. J. A 45, 131 (2010).

    ADS  Google Scholar 

  253. T. Stora, The EURISOL Facility: Feasibility study for the 100-kW direct targets (2005), CERN EDMS Doc. #758813, http://edms.cern.ch/document/758813/2 and on the http://www.eurisol.org/site02/ website in direct_target/publications_internal_task_note.php.

  254. J. Cornell, The EURISOL report - Feasibility study for the EURopean Isotope-Separation-On-Line radioactive beam facility (Ganil, Caen, 2003) appendix C available at http://pro.ganil-spiral2.eu/eurisol/feasibility-study-reports/feasibility-study-appendix-c.

  255. R. Page, Selection of key experiments with the associated instrumentation (2007) http://www.eurisol.org/site02/physics_and_instrumentation/.

  256. S. Chabod, Optimization of in-target yields for RIB production: Part I: direct targets, Internal Report, Irfu-08-21 (2008).

  257. W.B. Wilson, Status of CINDER'90 Codes and Data, LA-UR-98-361 (1998).

  258. B. Rapp, Shielding Aspects of Accelerators, Targets and Irradiation Facilities Eighth Meeting (SATIF-8), NEA/NSC/DOC(2010)6 (2010) page 251.

  259. D. Ene, Radiation protection aspects of the EURISOL Multi-MW target shielding, CEA Saclay Internal report: IRFU-09-15 (2009).

  260. R. Moormann, Ess-target inventories and their radiotoxic and toxic potential, Document ESS-R-1205-R.Moormann-1-02 (2003).

  261. R. Moormann, Safety aspects of high power targets for European spallation sources, International Conference on the Physics of Reactors - Nuclear Power: A Sustainable Resource, Interlaken, Switzerland, September 14-19 (2008).

  262. National Nuclear data Centre On-Line Service, http://www.nndc.bnl.gov/.

  263. H. Iwase et al., J. Nucl. Sci. Tech. 39, 1142 (2002).

    Google Scholar 

  264. S. Furihata, H. Nakashima, Analysis of activation yields by INC/GEM, JAERI-Conf-2001-006 (2006).

  265. L. Zanini, Neutronic and Nuclear Post-test Analysis of MEGAPIE, PSI Report 08-04 (2008) ISSN 1019-0643.

  266. G.S. Bauer et al., J. Nucl. Mater. 296, 17 (2001) ISSN 0022-3115.

    ADS  Google Scholar 

  267. L. Zanini et al., J. Nucl. Mater. 415, 367 (2011).

    ADS  Google Scholar 

  268. F. Michel-Sendis et al., Nucl. Instrum. Methods B 268, 2257 (2010).

    ADS  Google Scholar 

  269. R. Ridikas et al., Eur. Phys. J. A 32, 1 (2007).

    ADS  Google Scholar 

  270. J.-C. David, NUDATRA - WP 5.4 - Task T5.4.3 Activation calculations for the MEGAPIE target with INCL4 and ABLA, and comparison with other codes, Internal report, Irfu-08-453 (2008).

  271. Denise B. Pelowitz, MCNPX 2.7.0 Extensions, LA-UR-11-02295 (2011).

  272. N. Thiollière et al., Nucl. Sci. Eng. 169, 178 (2011).

    Google Scholar 

  273. J.-C. David, INCL4.5-ABLA07: What's new for the assessment of spallation target activation?, 4th, HPTW, Malmö, Sweden, May 2-6, 2011, www.hep.princeton.edu/~mcdonald/mumu/target/ in David/david_050411.pdf.

  274. J.-C. David, Spallation: understanding for predicting!?, report of Habilitation à Diriger des Recherches (in French) Irfu-12-259, http://tel.archives-ouvertes.fr/tel-00811587.

  275. Y. Tall, Volatile elements production rates in a proton-irradiated molten lead-bismuth target, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (EDP Sciences, 2008) pp. 1069–1072 - DOI: 10.1051/ndata:07762.

  276. L. Zanini et al., Nucl. Data Sheets 119, 292 (2014).

    ADS  Google Scholar 

  277. Yu.A. Korovin et al., J. Yad. Konstanty 117, 3 (1992).

    MathSciNet  Google Scholar 

  278. W.J. Ramler et al., Phys. Rev. 114, 154 (1959).

    ADS  Google Scholar 

  279. R.M. Lambrecht, S. Mirzadeh, J. Labelled Comp. Radiopharmaceut. 21, 1288 (1984).

    Google Scholar 

  280. R.M. Lambrecht, S. Mirzadeh, Appl. Radiat. Isot. 36, 443 (1985).

    Google Scholar 

  281. A.R. Barnett, J.S. Lilley, Phys. Rev. C 9, 2010 (1974).

    ADS  Google Scholar 

  282. G. Deconninck, M. Longree, Ann. Soc. Sci. Bruxelles 88, 341 (1974).

    Google Scholar 

  283. E.L. Kelly, E. Segre, Phys. Rev. 75, 999 (1949).

    ADS  Google Scholar 

  284. H.B. Patel et al., Nuovo Cimento A 112, 1439 (1999).

    ADS  Google Scholar 

  285. I.A. Rizvi et al., Appl. Radiat. Isot. 41, 215 (1990).

    Google Scholar 

  286. J.D. Stickler, K.J. Hofstetter, Phys. Rev. C 9, 1064 (1974).

    ADS  Google Scholar 

  287. N.L. Singh et al., Nuovo Cimento A 107, 1635 (1994).

    ADS  Google Scholar 

  288. A. Hermanne et al., Appl. Radiat. Isot. 63, 1 (2005) A. Hermanne, Experimental Study of the cross sections of alpha-Particle Induced Reactions on 209Bi.

    Google Scholar 

  289. S.S. Rattan et al., Radiochim. Acta 57, 7 (1992).

    Google Scholar 

  290. J.M. Carpenter, National School on Neutron and X-ray Scattering, Oak Ridge 11-24 August (2013) Carpenter-NeutronGeneration2013.pdf at http://neutrons.ornl.gov/conf/nxs2013/lecture/pdf/.

  291. ESS Technical Design Report.

  292. A. Leprince, Reliability and use of the INCL4.6-ABLA07 spallation model in the frame of the European Spallation Source (ESS) target design, CEA Saclay Internal report: IRFU-14-25 (2014).

  293. S. Leray et al., Nucl. Instrum. Methods B 268, 581 (2010).

    ADS  Google Scholar 

  294. GUM (Guide to the expression of Uncertainty in Measurement), JCGM 100:2008, http://www.bipm.org/fr/publications/guides/gum.html.

  295. A. Bolshakova et al., Eur. Phys. J. C 70, 543 (2010) and references therein.

    ADS  Google Scholar 

  296. M.G. Catanesi et al., Phys. Rev. C 77, 055207 (2008).

    ADS  Google Scholar 

  297. A. Bolshakova et al., Eur. Phys. J. C 62, 293 (2009).

    ADS  Google Scholar 

  298. S. Pedoux, J. Cugnon et al., Nucl. Phys. A 866, 16 (2011).

    ADS  Google Scholar 

  299. M.G. Catanesi et al., Eur. Phys. J. C 54, 37 (2008).

    ADS  Google Scholar 

  300. M.G. Catanesi et al., Eur. Phys. J. C 31, 787 (2007).

    ADS  Google Scholar 

  301. A. Lou, D.T. Goodhead, Phys. Rev. 168, 1214 (1968).

    ADS  Google Scholar 

  302. D.A. Evans, D.T. Goodhead, Nucl. Phys. B 3, 441 (1967).

    ADS  Google Scholar 

  303. J. Cugnon et al., Phys. Rev. C 41, 1701 (1990).

    ADS  Google Scholar 

  304. K. Pysz et al., Nucl. Instrum. Methods A 420, 356 (1999).

    ADS  Google Scholar 

  305. Z. Rudy, Non-mesonic hyperon decay in heavy hypernuclei, Habilitation - Report No. 1811/PH, 1999, Institute of Physics, Jagellonian University.

  306. Gy. Wolf et al., Nucl. Phys. A 552, 549 (1993).

    ADS  Google Scholar 

  307. Y. Song et al., Phys. At. Nucl. 73, 1707 (2010).

    Google Scholar 

  308. M. Goncalves et al., Phys. Lett. B 406, 1 (1997).

    ADS  Google Scholar 

  309. S. de Pina et al., Phys. Lett. B 434, 1 (1998).

    ADS  Google Scholar 

  310. M. Bockhorst et al., Z. Phys. C 63, 37 (1994).

    ADS  Google Scholar 

  311. K.-H. Glander et al., Eur. Phys. J. A 19, 251 (2004).

    ADS  Google Scholar 

  312. B. Juliá-Díaz et al., Phys. Rev. C 73, 055204 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -C. David.

Additional information

Communicated by N. Alamanos

Jean-Christophe David is a nuclear physicist. He worked on strangeness photoproduction off proton during his thesis (defended at the University of Lyon in 1994) and extended his model to electroproduction at the CEA/Saclay (1995). He spent six years modeling research reactors (CEA/Grenoble (Siloë) and CEA/Saclay (Osiris)), and went back to basic physics in 2001, to study spallation reactions (CEA/Saclay). From modeling to applications was his credo. He obtained a habilitation thesis (HDR) in 2012 and his point of view on the studies dealing with spallation reactions is presented in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, J.C. Spallation reactions: A successful interplay between modeling and applications. Eur. Phys. J. A 51, 68 (2015). https://doi.org/10.1140/epja/i2015-15068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15068-1

Keywords

Navigation