Skip to main content

Advertisement

Log in

3H/3He ratio as a probe of the nuclear symmetry energy at sub-saturation densities

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Within the newly updated version of the ultra-relativistic quantum molecular dynamics (UrQMD) model in which the Skyrme potential energy-density functional is introduced, the yield ratio between 3H and 3He clusters emitted from central 40Ca + 40Ca, 96Zr + 96Zr, 96Ru + 96Ru, and 197Au + 197Au collisions in the beam energy range from 0.12 to 1 GeV/nucleon is studied. The recent FOPI data for the 3H/3He ratio are compared with UrQMD calculations using 13 Skyrme interactions (all exhibiting similar values of iso-scalar incompressibility but very different density dependences of the symmetry energy). It is found that the 3H/3He ratio is sensitive to the nuclear symmetry energy at sub-saturation densities. Model calculations with moderately soft to linear symmetry energies are in qualitatively agreement with the 3H/3He ratio data of the FOPI Collaboration. This result is in line with both the recent constraints on the low-density symmetry energy available in the literature and our previous results for the high-density symmetry energy obtained with the elliptic flow of free nucleons and hydrogen isotopes as a sensitive probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.-A. Li, L.-W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  2. C.J. Horowitz et al., J. Phys. G: Nucl. Part. Phys. 41, 093001 (2014).

    Article  ADS  Google Scholar 

  3. B.-A. Li, A. Ramos, G. Verde, I. Vidana, Eur. Phys. J. A 50, 9 (2014).

    Article  ADS  Google Scholar 

  4. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012).

    Article  ADS  Google Scholar 

  5. J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013).

    Article  ADS  Google Scholar 

  6. P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014).

    Article  ADS  Google Scholar 

  7. X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013).

    Article  ADS  Google Scholar 

  8. Z. Zhang, L.-W. Chen, Phys. Lett. B 726, 234 (2013).

    Article  ADS  Google Scholar 

  9. B.A. Brown, Phys. Rev. Lett. 111, 232502 (2013).

    Article  ADS  Google Scholar 

  10. X. Fan, J. Dong, W. Zuo, Phys. Rev. C 89, 017305 (2014).

    Article  ADS  Google Scholar 

  11. L.-W. Chen, C.M. Ko, B.-A. Li, Phys. Rev. C 68, 017601 (2003).

    Article  ADS  Google Scholar 

  12. L.-W. Chen, C.M. Ko, B.-A. Li, Nucl. Phys. A 729, 809 (2003).

    Article  ADS  Google Scholar 

  13. L.-W. Chen, C.M. Ko, B.-A. Li, Phys. Rev. C 69, 054606 (2004).

    Article  ADS  Google Scholar 

  14. Q. Li, Z. Li, S. Soff, M. Bleicher, H. Stöcker, Phys. Rev. C 72, 034613 (2005).

    Article  ADS  Google Scholar 

  15. Y. Zhang, Z. Li, Phys. Rev. C 71, 024604 (2005).

    Article  ADS  Google Scholar 

  16. G.-C. Yong, B.-A. Li, L.-W. Chen, X.-C. Zhang, Phys. Rev. C 80, 044608 (2009).

    Article  ADS  Google Scholar 

  17. M. Youngs, PhD Thesis, Michigan State University (2013).

  18. FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 848, 366 (2010).

    Article  ADS  Google Scholar 

  19. FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 876, 1 (2012).

    Article  ADS  Google Scholar 

  20. Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, W. Trautmann, Phys. Rev. C 89, 034606 (2014).

    Article  ADS  Google Scholar 

  21. Y. Wang, C. Guo, Q. Li, H. Zhang, Y. Leifels, W. Trautmann, Phys. Rev. C 89, 044603 (2014).

    Article  ADS  Google Scholar 

  22. J. Dong, W. Zuo, J. Gu, U. Lombardo, Phys. Rev. C 85, 034308 (2012).

    Article  ADS  Google Scholar 

  23. Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, W. Trautmann, Phys. Rev. C 83, 044617 (2011).

    Article  ADS  Google Scholar 

  24. UrQMD-Collaboration (S.A. Bass et al.), Prog. Part. Nucl. Phys. 41, 255 (1998).

    Article  Google Scholar 

  25. M. Bleicher et al., J. Phys. G 25, 1859 (1999).

    Article  ADS  Google Scholar 

  26. Q. Li, G. Graf, M. Bleicher, Phys. Rev. C 85, 034908 (2012).

    Article  ADS  Google Scholar 

  27. Y. Zhang, Z. Li, Phys. Rev. C 74, 014602 (2006).

    Article  ADS  Google Scholar 

  28. M. Dutra, O. Lourenco, J.S. Sa Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012) and M. Dutra, PhD Thesis, Universidade Federal Fluminense (2011).

    Article  ADS  Google Scholar 

  29. C. Guo, Y. Wang, Q. Li, W. Trautmann, L. Liu, L. Wu, Sci. China Phys. Mech. Astron. 55, 252 (2012).

    Article  ADS  Google Scholar 

  30. Y. Wang, C. Guo, Q. Li et al., Sci. China Phys. Mech. Astron. 55, 2407 (2012).

    Article  ADS  Google Scholar 

  31. S. Kumar, Y.G. Ma, G.Q. Zhang, C.L. Zhou, Phys. Rev. C 85, 024620 (2012).

    Article  ADS  Google Scholar 

  32. S. Kumar, Y.G. Ma, Phys. Rev. C 86, 051601 (2012).

    Article  ADS  Google Scholar 

  33. Q. Li, Mod. Phys. Lett. A 24, 41 (2009).

    Article  ADS  Google Scholar 

  34. Y. Zhang, Z. Li, C. Zhou, M.B. Tsang, Phys. Rev. C 85, 051602 (2012).

    Article  ADS  Google Scholar 

  35. P. Russotto, P.Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R.C. Lemmon, Q. Li, J. Lukasik et al., Phys. Lett. B 697, 471 (2011).

    Article  ADS  Google Scholar 

  36. M.D. Cozma, Y. Leifels, W. Trautmann, Q. Li, P. Russotto, Phys. Rev. C 88, 044912 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Li.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, C., Li, Q. et al. 3H/3He ratio as a probe of the nuclear symmetry energy at sub-saturation densities. Eur. Phys. J. A 51, 37 (2015). https://doi.org/10.1140/epja/i2015-15037-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15037-8

Keywords

Navigation