Skip to main content
Log in

Bosonic and fermionic Weinberg-Joos (j,0) ⊕ (0,j) states of arbitrary spins as Lorentz tensors or tensor-spinors and second-order theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We propose a general method for the description of arbitrary single spin-j states transforming according to (j, 0) ⊕ (0, j) carrier spaces of the Lorentz algebra in terms of Lorentz tensors for bosons, and tensor-spinors for fermions, and by means of second-order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher ∂2j order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz tensor (tensor-spinor) representation spaces hosting one sole (j, 0) ⊕ (0, j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin-j sector of interest from the rest, while preserving the separate Lorentz and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are of second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2, 0) ⊕ (0, 3/2) is comfortably described by a second-order Lagrangian in the basis of the totally anti-symmetric Lorentz tensor-spinor of second rank, Ψ [μν]. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2, 0) ⊕ (0, 3/2) as part of Ψ [μν] we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross-section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, The Quantum Theory of Fields, Vol. 1, Foundations (Cambridge University Press, Cambridge, 1995).

  2. S. Weinberg, Phys. Rev. B 133, 1318 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Joos, Fortsch. Phys. 10, 65 (1962).

    Article  ADS  MATH  Google Scholar 

  4. A. Sankaranarayanan, Nuovo Cimento A 56, 459 (1968) DOI:10.1007/BF02753103.

    Article  ADS  Google Scholar 

  5. J.O. Eeg, Lett. Nuovo Cimento 13, 14 (1975).

    Article  Google Scholar 

  6. J.O. Eeg, Phys. Nor. 8, 137 (1976).

    Google Scholar 

  7. W. Rarita, J. Schwinger, Phys. Rev. 60, 61 (1941).

    Article  ADS  MATH  Google Scholar 

  8. G. Velo, D. Zwanziger, Phys. Rev. 188, 2218 (1969).

    Article  ADS  Google Scholar 

  9. S. Ferrara, M. Porrati, V. Telegdi, Phys. Rev. D 46, 3529 (1992).

    Article  ADS  Google Scholar 

  10. L.C. Hostler, J. Math. Phys. 26, 1348 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Morgan, Phys. Lett. B 351, 249 (1995).

    Article  ADS  Google Scholar 

  12. C.A. Vaquera-Araujo, JHEP 07, 049 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. C.A. Vaquera-Araujo, M. Napsuciale, R. Angeles-Martinez, JHEP 01, 011 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Napsuciale, M. Kirchbach, S. Rodriguez, Eur. Phys. J. A 29, 289 (2006).

    Article  ADS  Google Scholar 

  15. E.G. Delgado-Acosta, M. Napsuciale, Phys. Rev. D 80, 054002 (2009).

    Article  ADS  Google Scholar 

  16. E.G. Delgado-Acosta, M. Kirchbach, M. Napsuciale, S. Rodriguez, Phys. Rev. D 85, 116006 (2012).

    Article  ADS  Google Scholar 

  17. E.G. Delgado-Acosta, M. Kirchbach, M. Napsuciale, S. Rodríguez, Phys. Rev. D 87, 096010 (2013).

    Article  ADS  Google Scholar 

  18. Brain G. Wyborne, Group theory for physicists (Wiley & Sons, N.Y., 1974).

  19. Ch. Schubert, AIP Conf. Proc. 917, 178 (2007).

    Article  ADS  Google Scholar 

  20. Johnny Espin, Kirill Krasnov, arXiv:1308.1278 [hep-th].

  21. E.G. Delgado-Acosta, M. Napsuciale, S. Rodriguez, Phys. Rev. D 83, 073001 (2011).

    Article  ADS  Google Scholar 

  22. J. Niederle, A.G. Nikitin, Phys. Rev. D 64, 125013 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  23. D.V. Ahluwalia, N. Dadich, M. Kirchbach, Int. J. Mod. Phys. D 11, 1621 (2002).

    Article  ADS  MATH  Google Scholar 

  24. D.V. Ahluwalia, M. Kirchbach, Mod. Phys. Lett. A 16, 1377 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. M. Kirchbach, D.V. Ahluwalia, Phys. Lett. B 529, 124 (2002).

    Article  ADS  MATH  Google Scholar 

  26. C. Lorcé, Phys. Rev. D 79, 113011 (2009).

    Article  ADS  Google Scholar 

  27. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1998).

  28. P. Van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kirchbach.

Additional information

Communicated by R. Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado Acosta, E.G., Banda Guzmán, V.M. & Kirchbach, M. Bosonic and fermionic Weinberg-Joos (j,0) ⊕ (0,j) states of arbitrary spins as Lorentz tensors or tensor-spinors and second-order theory. Eur. Phys. J. A 51, 35 (2015). https://doi.org/10.1140/epja/i2015-15035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15035-x

Keywords

Navigation