Skip to main content
Log in

Characterization of light particles (Z ≤ 2) discrimination performances by pulse shape analysis techniques with high-granularity silicon detector

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Pulse shape analysis for light particles (\(Z \leq 2\)) is studied in a 500 μm thick Double-Sided Stripped Silicon Detector (DSSSD) of nTD type with a pitch lower than 500 μm. Good separation between the \(Z = 1\) isotopes is achieved irrespective of the side used for signal pick up with the detector biased at depletion voltage. The low energy threshold for discrimination between \(Z = 1\) isotopes is found to be around 2.5 MeV at depletion voltage and the quality of the separation can be slightly improved by using filtering methods. On the other hand, the discrimination performances are enhanced when lowering the bias of the detector at the expense of energy resolution. At nominal bias (i.e. overdepletion) where the energy resolution is the best, no separation between the three hydrogen isotopes is achieved when using the amplitude of the current signal. Discrimination can still be obtained by acquiring the time over a threshold set at 10% of the amplitude after applying a square bipolar filter to the current signal. Besides, in view of the design of the front-end electronics, the effect of the sampling rate needed for pulse shape analysis has been investigated and shows that below 200 MSa/s, the discrimination quality is strongly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Blumenfeld et al., Nucl. Instrum. Methods A 421, 471 (1999)

    Article  ADS  Google Scholar 

  2. E. Pollacco et al., Eur. Phys. J. A 25, 287 (2005)

    Article  Google Scholar 

  3. S.D. Pain et al., Nucl. Instrum. Methods B 261, 1222 (2007)

    Article  Google Scholar 

  4. V. Bildstein et al., Eur. Phys. J. A 48, 85 (2012)

    Article  ADS  Google Scholar 

  5. M. Labiche et al., Nucl. Instrum. Methods A 614, 439 (2010)

    Article  ADS  Google Scholar 

  6. D. Beaumel et al., Nucl. Instrum. Methods B 31, 661 (2013) and http://gaspard.in2p3.fr

    Article  ADS  Google Scholar 

  7. HYbrid DEtector array, http://www.uhu.es/gem/proyectos/hyde

  8. TRacking Array for light Charged particle Ejectiles, http://web.infn.it/spes/index.php/research-on-nuclear-physics/150-trace

  9. J. Simpson, J. Phys. G: Nucl. Part. Phys. 31, S1801 (2005)

    Article  Google Scholar 

  10. Photon Array for studies with Radioactive Ion and Stable beams, http://paris.ifj.edu.pl/

  11. J.B.A. England, G.M. Field, T.R. Ophel, Nucl. Instrum. Methods A 280, 291 (1989)

    Article  ADS  Google Scholar 

  12. C.A.J. Ammerlaan, R.F. Rumphorst, L.A.Ch. Koerts, Nucl. Instrum. Methods 22, 189 (1963)

    Article  ADS  Google Scholar 

  13. G. Pausch et al., Nucl. Instrum. Methods A 349, 281 (1994)

    Article  ADS  Google Scholar 

  14. M. Mutterer et al., IEEE Trans. Nucl. Sc. 47, 756 284 (2000) DOI:10.1109/23.856510

    Article  Google Scholar 

  15. M. Chabot et al., Nucl. Instrum. Methods Phys. Res. B 197, 155 (2002)

    Article  ADS  Google Scholar 

  16. R. Bougault et al., Eur. Phys. J. A 50, 47 (2014) and http://fazia.in2p3.fr

    Article  ADS  Google Scholar 

  17. L. Bardelli et al., Nucl. Instrum. Methods A 602, 501 (2009)

    Article  ADS  Google Scholar 

  18. L. Bardelli et al., Nucl. Instrum. Methods A 605, 353 (2009)

    Article  ADS  Google Scholar 

  19. S. Barlini et al., Nucl. Instrum. Methods A 600, 644 (2009)

    Article  ADS  Google Scholar 

  20. L. Bardelli et al., Nucl. Instrum. Methods A 654, 272 (2011)

    Article  ADS  Google Scholar 

  21. S. Carboni et al., Nucl. Instrum. Methods A 664, 251 (2012)

    Article  ADS  Google Scholar 

  22. N. Le Neindre et al., Nucl. Instrum. Methods A 701, 145 (2013)

    Article  ADS  Google Scholar 

  23. S. Barlini et al., Nucl. Instrum. Methods A 707, 89 (2013)

    Article  ADS  Google Scholar 

  24. J.A. Dueñas et al., Nucl. Instrum. Methods A 676, 70 (2012) DOI:10.1016/j.nima.2012.02.032

    Article  ADS  Google Scholar 

  25. J.A. Dueñas et al., Nucl. Instrum. Methods A 714, 48 (2013) DOI:10.1016/j.nima.2013.02.032

    Article  ADS  Google Scholar 

  26. D. Mengoni et al., Nucl. Instrum. Methods A 764, 241 (2014)

    Article  ADS  Google Scholar 

  27. M. von Schmid et al., Nucl. Instrum. Methods A 629, 197 (2011)

    Article  ADS  Google Scholar 

  28. J.A. Dueñas et al., Nucl. Instrum. Methods A 743, 44 (2014)

    Article  ADS  Google Scholar 

  29. Micron Semiconductor Ltd, http://www.micronsemiconductor.co.uk

  30. H. Hamrita et al., Nucl. Instrum. Methods A 531, 607 (2004)

    Article  ADS  Google Scholar 

  31. D. Breton, E. Delagnes, M. Houry, Nucl. Sci., IEEE Trans. 52/6, 2853 (2005) CAEN V1729A http://www.caen.it

    Article  ADS  Google Scholar 

  32. A. Boujrad, F. Saillant, Nucl. Sci. Sympos. Conf. Record 2, 12 (2000)

    Google Scholar 

  33. X. Grave, R. Canedo, J.-F. Clavelin, S. Du, E. Legay, Proceedings of the Real Time Conference, 14th IEEE-NPSS (2005) p. 5

  34. E. Gatti, P.F. Manfredi, Riv. Nuovo Cimento 9, 1 (1986) DOI:10.1007/BF02822156

    Article  MathSciNet  Google Scholar 

  35. B. Genolini et al., Nucl. Instrum. Methods A 732, 87 (2013)

    Article  ADS  Google Scholar 

  36. M.D.Z. James, F. Ziegler, Jochen P. Biersack, SRIM: The Stopping and Range of Ions in Matter (Lulu Press Co., 2009)

  37. M. Parlog, H. Hamrita, B. Borderie, Nucl. Instrum. Methods A 613, 290 (2010)

    Article  ADS  Google Scholar 

  38. H. Hamrita et al., Nucl. Instrum. Methods A 642, 59 (2011)

    Article  ADS  Google Scholar 

  39. G. Pasquali et al., Eur. Phys. J. A 50, 86 (2014)

    Article  ADS  Google Scholar 

  40. R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997) DOI:10.1016/S0168-9002(97)00048-X see also http://root.cern.ch/

    Article  ADS  Google Scholar 

  41. L. Pollacco, GET: A Generic Electronic System for TPCs for nuclear physics experiments, Physics Procedia - TIPP 2011 - Technology and Instrumentation for Particle Physics (Chicago, 2011) http://hal.in2p3 fr/in2p3-00738205

  42. C.E. Shannon, Proc. Inst. Radio Eng. 37, 10 (1949)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Assié.

Additional information

Communicated by P. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assié, M., Le Crom, B., Genolini, B. et al. Characterization of light particles (Z ≤ 2) discrimination performances by pulse shape analysis techniques with high-granularity silicon detector. Eur. Phys. J. A 51, 11 (2015). https://doi.org/10.1140/epja/i2015-15011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15011-6

Keywords

Navigation