Skip to main content

Advertisement

Log in

Enhancement of annihilation cross sections by electric interactions between the antineutron and the field of a large nucleus

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Data relative to antineutron and antiproton annihilation on large nuclei in the range 75-200MeV/c present two unexpected features: a) antineutron and antiproton cross sections have a similar size, b) the rise of the antineutron cross section at decreasing energy is much steeper than predictable for an inelastic process of purely strong nature at that energy. The observed behavior of \(\bar n\)-nucleus annihilations is similar to what would be expected for \(\bar p\)-nucleus annihilations, where the Coulomb attraction focusses \(\bar p\) trajectories towards the nucleus, enhancing the inelastic cross section by a factor 1/p 2 with respect to \(\bar n\) on the same target. This results in a 1/p 2 behavior at small energies. The presence of a similar enhancement in the antineutron case may only be justified by an interaction with a longer range than strong interactions. Excluding a Coulomb force because of the \(\bar n\) neutrality, and taking into account that an intrinsic electric dipole is forbidden for the antineutron, the next choice is an electric dipole that is induced by the nuclear electric field. Recent theoretical works have shown that a nonnegligible electric polarization may be induced in a neutron by QED vacuum polarization. Assuming this as a possibility, we have used a simple model to calculate the polarization strengths that are needed to fit the available data in terms of this effect. These are within the magnitude predicted by the vacuum polarization model. We have also discussed alternative scenarios that could induce an electric polarization of the antineutron as a consequence of the interplay between strong and e.m. interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006).

    Article  ADS  Google Scholar 

  2. V.V. Fedorov et al., Phys. Lett. B 694, 22 (2010).

    Article  ADS  Google Scholar 

  3. S. Dar, arXiv:hep-ph/0008248.

  4. M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005).

    Article  ADS  MATH  Google Scholar 

  5. J.C. Peng, Mod. Phys. Lett. A 23, 1397 (2008).

    Article  ADS  Google Scholar 

  6. S.K. Lamoreaux, R. Golub, J. Phys. G 36, 104002 (2009).

    Article  ADS  Google Scholar 

  7. C.A. Dominguez, H. Falomir, M. Ipinza, S. Kohler, M. Loewe, J.C. Rojas, Phys. Rev. D 80, 033008 (2009).

    Article  ADS  Google Scholar 

  8. F. Sauter, Z. Phys. 69, 742 (1931).

    Article  ADS  Google Scholar 

  9. O. Zimmer, C.A. Dominguez, H. Falomir, M. Loewe, Phys. Rev. D 85, 013004 (2012).

    Article  ADS  Google Scholar 

  10. B. Gunderson et al., Phys. Rev. D 23, 1981 (587).

  11. M. Agnello et al., Europhys. Lett. 7, 1988 (13).

  12. C. Barbina et al., Nucl. Phys. A 612, 1997 (346).

  13. V.G. Ableev et al., Nuovo Cimento A 107, 1994 (943).

  14. M. Astrua et al., Nucl. Phys. A 697, 2002 (209).

  15. T. Bressani, A. Filippi, Phys. Rep. 383, 213 (203).

  16. R. Bizzarri et al., Nuovo Cimento A 22, 1974 (225).

  17. T.E. Kalogeropoulos, G.S. Tzanakos, Phys. Rev. D 22, 1980 (2585).

  18. F. Balestra et al., Phys. Lett. B 149, 1984 (69).

  19. F. Balestra et al., Phys. Lett. B 165, 1985 (265).

  20. F. Balestra et al., Nucl. Phys. A 452, 1986 (573).

  21. F. Balestra et al., Phys. Lett. B 230, 1989 (36).

  22. W. Brückner et al., Z. Phys. A 335, 1990 (217).

  23. OBELIX Collaboration (A. Bertin et al.), Phys. Lett. B 369, 1996 (77).

  24. OBELIX Collaboration (A. Benedettini et al.), Nucl. Phys. B Proc. Suppl. A 56, 1997 (58).

  25. OBELIX Collaboration (A. Zenoni et al.), Phys. Lett. B 461, 1999 (405).

  26. OBELIX Collaboration (A. Zenoni et al.), Phys. Lett. B 461, 1999 (413).

  27. A. Bianconi et al., Phys. Lett. B 481, 2000 (194).

  28. A. Bianconi et al., Phys. Lett. B 492, 2000 (254).

  29. A. Bianconi et al., Phys. Lett. B 704, 2011 (461).

  30. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics - Quantum Mechanics (Non-Relativistic Theory), Vol. 3 (Butterworth-Heinemann, 1958).

  31. A. Bianconi, G. Bonomi, E. Lodi Rizzini, L. Venturelli, A. Zenoni, Phys. Rev. C 62, 014611 (2000).

    Article  ADS  Google Scholar 

  32. A. Bianconi, G. Bonomi, M.P. Bussa, E. Lodi Rizzini, L. Venturelli, A. Zenoni, Phys. Lett. B 483, 353 (2000).

    Article  ADS  Google Scholar 

  33. C.J. Batty, E. Friedman, A. Gal, Nucl. Phys. A 689, 721 (2001).

    Article  ADS  Google Scholar 

  34. J. Carbonell, K.V. Protasov, Hyp. Int. 76, 327 (1993).

    Article  ADS  Google Scholar 

  35. E. Friedman, Nucl. Phys. A 925, 2014 (141).

  36. F. Iazzi et al., Phys. Lett. B 475, 2000 (378).

  37. C. Bacci, in Proceedings of the First EPS Conference on “Meson Resonances and Related Electromagnetic Phenaoena”, Bologna, April 14-16, 1971, edited by R.H. Dalitz, A. Zichichi (Editrice Compositori, Italy, 1972).

  38. C. Bacci et al., Lett. Nuovo Cimento 3, 709 (1972).

    Article  Google Scholar 

  39. C.H. Berger et al., Phys. Lett. B 89, 120 (1979).

    Article  ADS  Google Scholar 

  40. S.E. Baru et al., Z. Phys. C 53, 219 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bianconi.

Additional information

Communicated by M. Anselmino

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianconi, A., Lodi Rizzini, E., Mascagna, V. et al. Enhancement of annihilation cross sections by electric interactions between the antineutron and the field of a large nucleus. Eur. Phys. J. A 50, 182 (2014). https://doi.org/10.1140/epja/i2014-14182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14182-x

Keywords

Navigation