Skip to main content
Log in

Nuclear interactions with modern three-body forces lead to the instability of neutron matter and neutron stars

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

It is shown that the neutron matter interacting through Argonne V18 pair-potential plus modern variants of Urbana or Illinois three-body forces is unstable. For the energy of N neutrons E(N), which interact through these forces, we prove mathematically that \(E(N) = - cN^3 + \mathcal{O}(N^{8/3} )\), where c > 0 is a constant. This means that: i) the energy per particle and neutron density diverge rapidly for large neutron numbers; ii) bound states of N neutrons exist for N large enough. The neutron matter collapse is possible due to the form of the repulsive core in three-body forces, which vanishes when three nucleons occupy the same site in space. The old variant of the forces Urbana VI, where the phenomenological repulsive core does not vanish at the origin, resolves this problem. We prove that to prevent the collapse one should add a repulsive term to the Urbana IX potential, which should be larger than 50 MeV when 3 nucleons occupy the same spatial position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Thirring, Found. Phys. 20, 1103 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  2. F.J. Dyson, A. Lenard, J. Math. Phys. 8, 423 (1967).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. E.H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics )Cambridge University Press, Edinburgh, 2010).

  4. E.H. Lieb, W. Thirring, Phys. Rev. Lett. 35, 687 (1975) 35.

    Article  ADS  Google Scholar 

  5. J.-L. Basdevant, J. Rich, M. Spiro, Fundamentals in Nuclear Physics: From Nuclear Structure to Cosmology, in Advanced Texts in Physics (Springer, 2005).

  6. R. Lazauskas, J. Carbonell, Phys. Rev. C 71, 044004 (2005).

    Article  ADS  Google Scholar 

  7. S.C. Pieper, Phys. Rev. Lett. 90, 252501 (2003).

    Article  ADS  Google Scholar 

  8. V.R. Pandharipande, S.C. Pieper, R. Schiavilla, Nuclear Forces and Light Nuclei, minimafisica.biodec.com/Members/k/Schiavilla-notes.pdf.

  9. J. Carlson, V.R. Pandharipande, R.B. Wiringa, Nucl. Phys. A 401, 59 (1983).

    Article  ADS  Google Scholar 

  10. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  11. S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001).

    Article  ADS  Google Scholar 

  12. S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001).

    Article  ADS  Google Scholar 

  13. S.C. Pieper, K. Varga, R.B. Wiringa, Phys. Rev. C 66, 044310 (2002).

    Article  ADS  Google Scholar 

  14. S.C. Pieper, R.B. Wiringa, J. Carlson, Phys. Rev. C 70, 054325 (2004).

    Article  ADS  Google Scholar 

  15. S.C. Pieper, Nucl. Phys. A 751, 516c (2005).

    Article  ADS  Google Scholar 

  16. J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. I. Tews, T. Kruger, K. Hebeler, A. Schwenk, Phys. Rev. Lett. 110, 032504 (2013).

    Article  ADS  Google Scholar 

  18. I.E. Lagaris, V.R. Pandharipande, Nucl. Phys. A 359, 349 (1981).

    Article  ADS  Google Scholar 

  19. J.F. Perez, C.P. Malta, F.A.B. Coutinho, J. Math. Phys. 26, 2262 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  20. S.A. Vugal'ter, G.M. Zhislin, Theor. Math. Phys. 76, 757 (1988).

    Article  MathSciNet  Google Scholar 

  21. G.M. Zhislin, Theor. Math. Phys. 157, 1461 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  22. G.M. Zhislin, Theor. Math. Phys. 152, 1322 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Seiringer, J. Spectr. Theory 2, 321 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  24. D.R. Thompson, M. Lemere, Y.C. Tang, Nucl. Phys. A 286, 53 (1977).

    Article  ADS  Google Scholar 

  25. S.K. Bogner et al., Phys. Rev. C 84, 044306 (2011).

    Article  ADS  Google Scholar 

  26. A.B. Volkov, Nucl. Phys. 74, 33 (1965).

    Article  Google Scholar 

  27. K. Varga, Y. Suzuki, Phys. Rev. C 52, 2885 (1995).

    Article  ADS  Google Scholar 

  28. D.K. Gridnev, S. Schramm, K.A. Gridnev, W. Greiner, to be submitted to Phys. Rev. C.

  29. B.S. Pudliner, V.R. Pandharipande, J. Carlson, R.B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995).

    Article  ADS  Google Scholar 

  30. S.C. Pieper, AIP Conf. Proc. 1011, 143 (2008).

    Article  ADS  Google Scholar 

  31. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998).

    Article  ADS  Google Scholar 

  32. R.B. Wiringa, S.C. Pieper, Phys. Rev. Lett. 89, 182501 (2002).

    Article  ADS  Google Scholar 

  33. S. Gandolfi, J. Carlson, Sanjay Reddy, Phys. Rev. C 85, 032801(R) (2012).

    Article  ADS  Google Scholar 

  34. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011).

    Article  ADS  Google Scholar 

  35. V. Bernard, E. Epelbaum, H. Krebs, Ulf-G. Meißner, Phys. Rev. C 84, 054001 (2011).

    Article  ADS  Google Scholar 

  36. P. Maris, J.P. Vary, S. Gandolfi, J. Carlson, S.C. Pieper, Phys. Rev. C 87, 054318 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry K. Gridnev.

Additional information

Communicated by A.A. Korsheninnikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gridnev, D.K., Schramm, S., Gridnev, K.A. et al. Nuclear interactions with modern three-body forces lead to the instability of neutron matter and neutron stars. Eur. Phys. J. A 50, 118 (2014). https://doi.org/10.1140/epja/i2014-14118-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14118-6

Keywords

Navigation