Skip to main content
Log in

Design and commissioning of a timestamp-based data acquisition system for the DRAGON recoil mass separator

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The DRAGON recoil mass separator at TRIUMF exists to study radiative proton and alpha capture reactions, which are important in a variety of astrophysical scenarios. DRAGON experiments require a data acquisition system that can be triggered on either reaction product (γ-ray or heavy ion), with the additional requirement of being able to promptly recognize coincidence events in an online environment. To this end, we have designed and implemented a new data acquisition system for DRAGON, which consists of two independently triggered readouts. Events from both systems are recorded with timestamps from a 20 MHz clock that are used to tag coincidences in the earliest possible stage of the data analysis. Here we report on the design, implementation, and commissioning of the new DRAGON data acquisition system, including the hardware, trigger logic, coincidence reconstruction algorithm, and live time considerations. We also discuss the results of an experiment commissioning the new system, which measured the strength of the E c.m. = 1113 keV resonance in the 20 Ne(p, γ)21 Na radiative proton capture reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Akers et al., Phys. Rev. Lett. 110, 262502 (2013).

    Article  ADS  Google Scholar 

  2. A.L. Sallaska, C. Wrede, A. García, D.W. Storm, T.A.D. Brown, C. Ruiz, K.A. Snover, D.F. Ottewell, L. Buchmann, C. Vockenhuber, D.A. Hutcheon, J.A. Caggiano, Phys. Rev. Lett. 105, 152501 (2010).

    Article  ADS  Google Scholar 

  3. L. Erikson et al., Phys. Rev. C 81, 045808 (2010).

    Article  ADS  Google Scholar 

  4. C. Ruiz et al., Phys. Rev. Lett. 96, 252501 (2006).

    Article  ADS  Google Scholar 

  5. S. Bishop et al., Phys. Rev. Lett. 90, 162501 (2003).

    Article  ADS  Google Scholar 

  6. J. Fallis et al., Phys. Rev. C 88, 045801 (2013).

    Article  ADS  Google Scholar 

  7. C. Vockenhuber et al., Phys. Rev. C 76, 035801 (2007).

    Article  ADS  Google Scholar 

  8. J.M. D'Auria et al., Phys. Rev. C 69, 065803 (2004).

    Article  ADS  Google Scholar 

  9. B. Davids, R.H. Cyburt, J. José, S. Mythili, Astrophys. J. 735, 40 (2011).

    Article  ADS  Google Scholar 

  10. C. Matei et al., Phys. Rev. Lett. 97, 242503 (2006).

    Article  ADS  Google Scholar 

  11. D. Schürmann, A.D. Leva, L. Gialanella, R. Kunz, F. Strieder, N.D. Cesare, M.D. Cesare, A. D'Onofrio, K. Fortak, G. Imbriani, D. Rogalla, M. Romano, F. Terrasi, Phys. Lett. B 703, 557 (2011).

    Article  ADS  Google Scholar 

  12. D. Hutcheon et al., Nucl. Instrum. Methods Phys. Res. A 498, 190 (2003).

    Article  ADS  Google Scholar 

  13. R. Laxdal, Nucl. Instrum. Methods Phys. Res. B 204, 400 (2003).

    Article  ADS  Google Scholar 

  14. C. Vockenhuber, L. Erikson, L. Buchmann, U. Greife, U. Hager, D. Hutcheon, M. Lamey, P. Machule, D. Ottewell, C. Ruiz, G. Ruprecht, Nucl. Instrum. Methods Phys. Res. A 603, 372 (2009).

    Article  ADS  Google Scholar 

  15. C. Wrede, A. Hussein, J.G. Rogers, J. D'Auria, Nucl. Instrum. Methods Phys. Res. B 204, 619 (2003).

    Article  ADS  Google Scholar 

  16. A. Simon, J. Fallis, A. Spyrou, A.M. Laird, C. Ruiz, L. Buchmann, B.R. Fulton, D. Hutcheon, L. Martin, D. Ottewell, A. Rojas, Eur. Phys. J. A 49, 1 (2013).

    Article  Google Scholar 

  17. K. Olchanski, VME-NIMIO32 - General Purpose VME FPGA Board, Tech. Rep. (TRIUMF, Vancouver, BC Canada, 2012).

  18. Cyclone Device Handbook, Tech. Rep. (Altera Corporation, San Jose, CA USA, 2008).

  19. Model V1190-VX1190 A/B, 128/64 Channel Multihit TDC, Tech. Rep. (CAEN S.p.A., Viareggio, Italy, 2012).

  20. Model V792/V792N, 32/16 Channel QDC, Tech. Rep. (CAEN S.p.A., Viareggio, Italy, 2010).

  21. Model V812 16 Channel Constant Fraction Discriminator, Tech. Rep. (CAEN S.p.A., Viareggio, Italy, 2011).

  22. Model V785, 16/32 Channel Peak Sensing ADC, Tech. Rep. (CAEN S.p.A., Viareggio, Italy, 2012).

  23. S. Ritt, P. Amaudruz, in Proceedings of the Xth IEEE REAL TIME Conference (1997) pp. 309--312, see also http://midas.psi.ch.

  24. Daq related information site, http://daq-plone.triumf.ca/ (2012) accessed: 2013-11-25.

  25. R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. A 389, 81 (1997) see also http://root.cern.ch.

    Article  ADS  Google Scholar 

  26. DRAGON analysis codes (2014) https://github.com/dragontriumf/analyzer/ accessed: 2014-02-20.

  27. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edition (Addison Wesley Longman, USA, 2012). .

  28. J. Maddock, Boost TR1, http://www.boost.org/doc/libs/1_55_0/doc/html/boost_tr1.html (2005) accessed: 2013-11-25.

  29. G. Christian, D. Hutcheon, C. Akers, D. Connolly, J. Fallis, C. Ruiz, Phys. Rev. C 88, 038801 (2013).

    Article  ADS  Google Scholar 

  30. S. Engel et al., Nucl. Instrum. Methods Phys. Res. A 553, 491 (2005).

    Article  ADS  Google Scholar 

  31. S. Engel, Awakening of the DRAGON: Commissioning of the DRAGON recoil separator facility and first studies on the 21Na(α, p)22Mg reaction, PhD thesis, Ruhr-Universität Bochum, Bochum, Germany (2003) unpublished.

  32. C. Rolfs, W. Rodne, M. Shapiro, H. Winkler, Nucl. Phys. A 241, 460 (1975).

    Article  ADS  Google Scholar 

  33. J. José, A. Coc, M. Hernanz, Astrophys. J 520, 347 (1999).

    Article  ADS  Google Scholar 

  34. N. Prantzos, A. Coc, J.P. Thibaud, Astrophys. J 379, 729 (1991).

    Article  ADS  Google Scholar 

  35. R. Bloch, T. Knellwolf, R. Pixley, Nucl. Phys. A 123, 129 (1969).

    Article  ADS  Google Scholar 

  36. C. Iliadis, R. Longland, A. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010).

    Article  ADS  Google Scholar 

  37. G.C. Thomas, N.W. Tanner, Proc. Phys. Soc. 75, 498 (1960).

    Article  ADS  Google Scholar 

  38. J. Keinonen, M. Riihonen, A. Anttila, Phys. Rev. C 15, 579 (1977).

    Article  ADS  Google Scholar 

  39. D.G. Gigliotti, Efficiency calibration measurement and geant simulation of the DRAGON BGO gamma ray array at TRIUMF, Master's thesis, University of Northern British Columbia, Prince George, Canada (2004) unpublished.

  40. R. Firestone, Nucl. Data Sheets 103, 269 (2004).

    Article  ADS  Google Scholar 

  41. K. Jayamanna, F. Ames, G. Cojocaru, R. Baartman, P. Bricault, R. Dube, R. Laxdal, M. Marchetto, M. MacDonald, P. Schmor, G. Wight, D. Yuan, Rev. Sci. Instrum. 79, 02C711 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Christian.

Additional information

Communicated by R. Krücken

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christian, G., Akers, C., Connolly, D. et al. Design and commissioning of a timestamp-based data acquisition system for the DRAGON recoil mass separator. Eur. Phys. J. A 50, 75 (2014). https://doi.org/10.1140/epja/i2014-14075-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14075-0

Keywords

Navigation