Skip to main content

Advertisement

Log in

Clusterized nuclear matter in the (proto-)neutron star crust and the symmetry energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Though generally agreed that the symmetry energy plays a dramatic role in determining the structure of neutron stars and the evolution of core-collapsing supernovae, little is known in what concerns its value away from normal nuclear matter density and, even more important, the correct definition of this quantity in the case of unhomogeneous matter. Indeed, nuclear matter traditionally addressed by mean-field models is uniform while clusters are known to exist in the dilute baryonic matter which constitutes the main component of compact objects outer shells. In the present work we investigate the meaning of symmetry energy in the case of clusterized systems and the sensitivity of the proto-neutron star composition and equation of state to the effective interaction. To this aim an improved Nuclear Statistical Equilibrium (NSE) model is developed, where the same effective interaction is consistently used to determine the clusters and unbound particles energy functionals in the self-consistent mean-field approximation. In the same framework, in-medium modifications to the cluster energies due to the presence of the nuclear gas are evaluated. We show that the excluded volume effect does not exhaust the in-medium effects and an extra isospin and density-dependent energy shift has to be considered to consistently determine the composition of subsaturation stellar matter. The symmetry energy of diluted matter is seen to depend on the isovector properties of the effective interaction, but its behavior with density and its quantitative value are strongly modified by clusterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Moller, W.D. Myers, H. Sagawa, S. Yoshida, Phys. Rev. Lett. 108, 052501 (2012).

    Article  ADS  Google Scholar 

  2. S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).

    Article  ADS  Google Scholar 

  3. V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).

    Article  ADS  Google Scholar 

  4. Bao-An Li, Lie-Wen Chen, Che Ming Ko, Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  5. P. Russotto et al., Phys. Lett. B 697, 471 (2011).

    Article  ADS  Google Scholar 

  6. D. Vretenar, Y.F. Niu, N. Paar, J. Meng, Phys. Rev. C 85, 044317 (2012).

    Article  ADS  Google Scholar 

  7. X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, G. Colo, Phys. Rev. C 85, 024601 (2012).

    Article  ADS  Google Scholar 

  8. X. Roca-Maza, M. Brenna, B.K. Agrawal, P.F. Bortignon, G. Colo, Li-Gang Cao, N. Paar, D. Vretenar, Phys. Rev. C 87, 034301 (2013).

    Article  ADS  Google Scholar 

  9. Jun Liang, Li-Gang Cao, Zhong-Yu Ma, Phys. Rev. C 75, 054320 (2007).

    Article  ADS  Google Scholar 

  10. Luca Trippa, Gianluca Colo, Enrico Vigezzi, Phys. Rev. C 77, 061304 (2008).

    Article  ADS  Google Scholar 

  11. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005).

    Article  ADS  Google Scholar 

  12. F.J. Fattoyev, J. Piekarewicz, Phys. Rev. C 86, 015802 (2012).

    Article  ADS  Google Scholar 

  13. F. Grill, C. Providencia, S.S. Avancini, Phys. Rev. C 85, 055808 (2012).

    Article  ADS  Google Scholar 

  14. S. Gandolfi, J. Carlson, Sanjay Reddy, Phys. Rev. C 85, 032801 (2012).

    Article  ADS  Google Scholar 

  15. M. Lopez-Quelle, S. Marcos, R. Niembro, A. Bouyssy, Nguyen Van Giai, Nucl. Phys. A 483, 479 (1988).

    Article  ADS  Google Scholar 

  16. B.A. Li, Nucl. Phys. A 681, 434 (2001).

    Article  ADS  Google Scholar 

  17. J.M. Lattimer, M. Prakash, Science 304, 536 (2004).

    Article  ADS  Google Scholar 

  18. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars: Equation of State and Structure (Springer, Berlin, 2007).

  19. N.K. Glendenning, Phys. Rep. 342, 393 (2001).

    Article  ADS  Google Scholar 

  20. C. Ducoin, Ph. Chomaz, F. Gulminelli, Nucl. Phys. A 771, 68 (2006).

    Article  ADS  Google Scholar 

  21. C.J. Horowitz, M.A. Perez-Garcia, J. Carriere, D.K. Berry, J. Piekarewicz, Phys. Rev. C 70, 065806 (2004).

    Article  ADS  Google Scholar 

  22. F. Gulminelli, Ad.R. Raduta, Phys. Rev. C 85, 025803 (2012).

    Article  ADS  Google Scholar 

  23. A.C. Phillips, The Physics of Stars (John Wiley & Sons, Chichester, 1994).

  24. S.R. Souza, A.W. Steiner, W.G. Lynch, R. Donangelo, M.A. Famiano, Astrophys. J. 707, 1495 (2009).

    Article  ADS  Google Scholar 

  25. A.S. Botvina, I.N. Mishustin, Nucl. Phys. A 843, 98 (2010).

    Article  ADS  Google Scholar 

  26. M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010).

    Article  ADS  Google Scholar 

  27. Ad.R. Raduta, F. Gulminelli, Phys. Rev. C 82, 065801 (2010).

    Article  ADS  Google Scholar 

  28. S.I. Blinnikov, I.V. Panov, M.A. Rudzsky, K. Sumiyoshi, Astron. Astrophys. 535, A37 (2011).

    Article  ADS  Google Scholar 

  29. J.W. Negele, D. Vautherin, Nucl. Phys. A 207, 298 (1973).

    Article  ADS  Google Scholar 

  30. R.D. Williams, S.E. Koonin, Nucl. Phys. A 435, 844 (1985).

    Article  ADS  Google Scholar 

  31. T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba, A. Iwamoto, Phys. Rev. C 57, 655 (1998).

    Article  ADS  Google Scholar 

  32. F. Sebille, V. de la Mota, S. Figerou, Phys. Rev. C 84, 055801 (2011).

    Article  ADS  Google Scholar 

  33. H. Sonoda, G. Watanabe, K. Sato, K. Yasuoka, T. Ebisuzaki, Phys. Rev. C 77, 035806 (2008).

    Article  ADS  Google Scholar 

  34. G. Watanabe, H. Sonoda, T. Maruyama, K. Sato, K. Yasuoka, T. Ebisuzaki, Phys. Rev. Lett. 103, 121101 (2009).

    Article  ADS  Google Scholar 

  35. W.G. Newton, J.R. Stone, Phys. Rev. C 79, 055801 (2009).

    Article  ADS  Google Scholar 

  36. M.E. Fisher, Physics (N.Y.) 3, 255 (1967).

    Google Scholar 

  37. J.M. Lattimer, F. Douglas Swesty, Nucl. Phys. A 535, 331 (1991).

    Article  ADS  Google Scholar 

  38. P. Danielewicz, J. Lee, Nucl. Phys. A 818, 36 (2009).

    Article  ADS  Google Scholar 

  39. M. Hempel, J. Schaffner-Bielich, S. Typel, G. Röpke, Phys. Rev. C 84, 055804 (2011).

    Article  ADS  Google Scholar 

  40. G. Roepke, Phys. Rev. C 79, 014002 (2009).

    Article  ADS  Google Scholar 

  41. G. Roepke, Nucl. Phys. A 867, 66 (2011).

    Article  ADS  Google Scholar 

  42. P. Papakonstantinou, J. Margueron, F. Gulminelli, Ad.R. Raduta, Phys. Rev. C 88, 045805 (2013).

    Article  ADS  Google Scholar 

  43. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  44. N. van Giai, H. Sagawa, Phys. Lett. B 106, 379 (1981).

    Article  ADS  Google Scholar 

  45. P.-G. Reinhard, H. Flocard, Nucl. Phys. A 584, 467 (1995).

    Article  ADS  Google Scholar 

  46. L.G. Cao, U. Lombardo, C.W. Shen, N.V. Giai, Phys. Rev. C 73, 014313 (2006).

    Article  ADS  Google Scholar 

  47. F. Douchin, P. Haensel, J. Meyer, Nucl. Phys. A 665, 419 (2000).

    Article  ADS  Google Scholar 

  48. M. Brack, C. Guet, H.B. Hakansson, Phys. Rep. 123, 275 (1985).

    Article  ADS  Google Scholar 

  49. J. Treiner, H. Krivine, Ann. Phys. 170, 406 (1986).

    Article  ADS  Google Scholar 

  50. S. Typel, G. Roepke, T. Klahn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ad. R. Raduta.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Ángels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raduta, A.R., Aymard, F. & Gulminelli, F. Clusterized nuclear matter in the (proto-)neutron star crust and the symmetry energy. Eur. Phys. J. A 50, 24 (2014). https://doi.org/10.1140/epja/i2014-14024-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14024-y

Keywords

Navigation