Skip to main content
Log in

Isospin dependence of nucleon correlations in ground-state nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2014

Abstract

The dispersive optical model (DOM) as presently implemented can investigate the isospin (nucleon asymmetry) dependence of the Hartree-Fock-like potential relevant for nucleons near the Fermi energy. Data constraints indicate that a Lane-type potential adequately describes its asymmetry dependence. Correlations beyond the mean field can also be described in this framework, but this requires an extension that treats the non-locality of the Hartree-Fock-like potential properly. The DOM has therefore been extended to properly describe ground-state properties of nuclei as a function of nucleon asymmetry in addition to standard ingredients like elastic nucleon scattering data and level structure. Predictions of nucleon correlations at larger nucleon asymmetries can then be made after data at smaller asymmetries constrain the potentials that represent the nucleon self-energy. A simple extrapolation for Sn isotopes generates predictions for increasing correlations of minority protons with increasing neutron number. Such predictions can be investigated by performing experiments with exotic beams. The predicted neutron properties for the double closed-shell 132Sn nucleus exhibit similar correlations as those in 208Pb . Future relevance of these studies for understanding the properties of all nucleons, including those with high momentum, and the role of three-body forces in nuclei are briefly discussed. Such an implementation will require a proper treatment of the non-locality of the imaginary part of the potentials and a description of high-momentum nucleons as experimentally constrained by the (e, ep) reactions performed at Jefferson Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Dickhoff, D. Van Neck, Many-Body Theory Exposed!, 2nd edition (World Scientific, New Jersey, 2008).

  2. C. Mahaux, R. Sartor, Adv. Nucl. Phys. 20, 1 (1991).

    ADS  Google Scholar 

  3. F. Perey, B. Buck, Nucl. Phys. 32, 353 (1962).

    MATH  Google Scholar 

  4. F.D. Becchetti Jr., G.W. Greenlees, Phys. Rev. 182, 1190 (1969).

    ADS  Google Scholar 

  5. R.L. Varner, W.J. Thompson, T.L. McAbee, E.J. Ludwig, T.B. Clegg, Phys. Rep. 201, 57 (1991).

    ADS  Google Scholar 

  6. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    ADS  Google Scholar 

  7. R.J. Charity, L.G. Sobotka, W.H. Dickhoff, Phys. Rev. Lett. 97, 162503 (2006).

    ADS  Google Scholar 

  8. R.J. Charity, J.M. Mueller, L.G. Sobotka, W.H. Dickhoff, Phys. Rev. C 76, 044314 (2007).

    ADS  Google Scholar 

  9. J.M. Mueller, R.J. Charity, R. Shane, L.G. Sobotka, S.J. Waldecker, W.H. Dickhoff, A.S. Crowell, J.H. Esterline, B. Fallin, C.R. Howell, C. Westerfeldt, M. Youngs, B.J. Crowe, R.S. Pedroni, Phys. Rev. C 83, 064605 (2011).

    ADS  Google Scholar 

  10. A.M. Lane, Nucl. Phys. 35, 676 (1962).

    Google Scholar 

  11. J.M. Eisenberg, W. Greiner, Nuclear Theory, Vol. I (North-Holland, Amsterdam, 1987).

  12. P.A. Seeger, Technical Report LA-DC-8950a, Los Alamos Sci. Lab. (1968).

  13. W.D. Myers, Droplet Model of Atomic Nuclei (Plenum, New York, 1977).

  14. Peter Möller, William D. Myers, Hiroyuki Sagawa, Satoshi Yoshida, Phys. Rev. Lett. 108, 052501 (2012).

    ADS  Google Scholar 

  15. M.B. Tsang, J.R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C.J. Horowitz, Jenny Lee, W.G. Lynch, Z. Kohley, R. Lemmon, P. Möller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A.W. Steiner, I. Vidaña, S.J. Yennello, Phys. Rev. C 86, 015803 (2012).

    ADS  Google Scholar 

  16. P. Danielewicz, J. Lee, Nucl. Phys. A 818, 36 (2009).

    ADS  Google Scholar 

  17. R.J. Rook, Nucl. Phys. A 222, 596 (1974).

    ADS  Google Scholar 

  18. W.H. Dickhoff, D. Van Neck, S.J. Waldecker, R.J. Charity, L.G. Sobotka, Phys. Rev. C 82, 054306 (2010).

    ADS  Google Scholar 

  19. L. Lapikás, Nucl. Phys. A 553, 297c (1993).

    ADS  Google Scholar 

  20. S.J. Waldecker, C. Barbieri, W.H. Dickhoff, Phys. Rev. C 84, 034616 (2011).

    ADS  Google Scholar 

  21. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    ADS  Google Scholar 

  22. K.L. Jones et al., Nature Lett. 465, 454 (2010).

    ADS  Google Scholar 

  23. K.L. Jones et al., Phys. Rev. C 84, 034601 (2011).

    ADS  Google Scholar 

  24. N.B. Nguyen, S.J. Waldecker, F.M. Nunes, R.J. Charity, W.H. Dickhoff, Phys. Rev. C 84, 044611 (2011).

    ADS  Google Scholar 

  25. R.C. Johnson, AIP Conf. Proc. 791, 128 (2005).

    ADS  Google Scholar 

  26. A. Gade, D. Bazin, B.A. Brown, C.M. Campbell, J.A. Church, D.C. Dinca, J. Enders, T. Glasmacher, P.G. Hansen, Z. Hu, K.W. Kemper, W.F. Mueller, H. Olliver, B.C. Perry, L.A. Riley, B.T. Roeder, B.M. Sherrill, J.R. Terry, J.A. Tostevin, K.L. Yurkewicz, Phys. Rev. Lett. 93, 042501 (2004).

    ADS  Google Scholar 

  27. A. Gade, P. Adrich, D. Bazin, M.D. Bowen, B.A. Brown, C.M. Campbell, J.M. Cook, T. Glasmacher, P.G. Hansen, K. Hosier, S. McDaniel, D. McGlinchery, A. Obertelli, K. Siwek, L.A. Riley, J.A. Tostevin, D. Weisshaar, Phys. Rev. C 77, 044306 (2008).

    ADS  Google Scholar 

  28. Jenny Lee, M.B. Tsang, D. Bazin, D. Coupland, V. Henzl, D. Henzlova, M. Kilburn, W.G. Lynch, A.M. Rogers, A. Sanetullaev, A. Signoracci, Z.Y. Sun, M. Youngs, K.Y. Chae, R.J. Charity, H.K. Cheung, M. Famiano, S. Hudan, P. O’Malley, W.A. Peters, K. Schmitt, D. Shapira, L.G. Sobotka, Phys. Rev. Lett. 104, 112701 (2010).

    ADS  Google Scholar 

  29. F. Flavigny, A. Gillibert, L. Nalpas, A. Obertelli, N. Keeley, C. Barbieri, D. Beaumel, S. Boissinot, G. Burgunder, A. Cipollone, A. Corsi, J. Gibelin, S. Giron, J. Guillot, F. Hammache, V. Lapoux, A. Matta, E.C. Pollacco, R. Raabe, M. Rejmund, N. de Sereville, A. Shrivastava, A. Signoracci, Y. Utsuno, Phys. Rev. Lett. 110, 122503 (2013).

    ADS  Google Scholar 

  30. C. Barbieri, W.H. Dickhoff, Int. J. Mod. Phys. A 24, 2060 (2009).

    ADS  Google Scholar 

  31. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    ADS  Google Scholar 

  32. O. Jensen, G. Hagen, M. Hjorth-Jensen, B.A. Brown, A. Gade, Phys. Rev. Lett. 107, 032501 (2011).

    ADS  Google Scholar 

  33. M. Leuschner, J.R. Calarco, F.W. Hersman, E. Jans, G.J. Kramer, L. Lapikás, G. van der Steenhoven, P.K.A. de Witt Huberts, H.P. Blok, N. Kalantar-Nayestanaki, J. Friedrich, Phys. Rev. C 49, 955 (1994).

    ADS  Google Scholar 

  34. R. Shane, R.J. Charity, L.G. Sobotka, D. Bazin, B.A. Brown, A. Gade, G.F. Grinyer, S. McDaniel, A. Ratkiewicz, D. Weisshaar, A. Bonaccorso, J.A. Tostevin, Phys. Rev. C 85, 064612 (2012).

    ADS  Google Scholar 

  35. H. Dussan, S.J. Waldecker, W.H. Dickhoff, H. Müther, A. Polls, Phys. Rev. C 84, 044319 (2011).

    ADS  Google Scholar 

  36. M.H. Mahzoon, S.J. Waldecker, R.J. Charity, W.H. Dickhoff, H. Dussan, in preparation (2013).

  37. D. Rohe, C.S. Armstrong, R. Asaturyan, O.K. Baker, S. Bueltmann, C. Carasco, D. Day, R. Ent, H.C. Fenker, K. Garrow A. Gasparian, P. Gueye, M. Hauger, A. Honegger, J. Jourdan, C.E. Keppel, G. Kubon, R. Lindgren, A. Lung, D.J. Mack, J.H. Mitchell, H. Mkrtchyan, D. Mocelj, K. Normand, T. Petitjean, O. Rondon, E. Segbefia, I. Sick, S. Stepanyan, L. Tang, F. Tiefenbacher, W.F. Vulcan, G. Warren, S.A. Wood, L. Yuan, M. Zeier, H. Zhu, B. Zihlmann, Phys. Rev. Lett. 93, 182501 (2004).

    ADS  Google Scholar 

  38. H. Müther, A. Polls, W.H. Dickhoff, Phys. Rev. C 51, 3040 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Charity.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Ángels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charity, R.J., Dickhoff, W.H., Sobotka, L.G. et al. Isospin dependence of nucleon correlations in ground-state nuclei. Eur. Phys. J. A 50, 23 (2014). https://doi.org/10.1140/epja/i2014-14023-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14023-0

Keywords

Navigation