Skip to main content

Advertisement

Log in

Symmetry energy from QCD sum rules

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We review the recent attempts to calculate the nuclear symmetry energy from QCD sum rules. Calculating the difference between the proton and neutron correlation function in an isospin asymmetric nuclear matter within the QCD sum rule approach, the potential part of the nuclear symmetry energy can be expressed in terms of local operators. We find that the scalar (vector) self-energy part gives negative (positive) contribution to the nuclear symmetry energy, consistent with the results from relativistic mean-field theories. Moreover, the magnitudes are consistent with phenomenological estimates. In terms of the operators, we find that an important contribution to self-energies contributing to the symmetry energy comes from the twist-4 matrix elements, whose leading density dependence can be extracted from deep inelastic scattering experiments. Our result also extends an early success of the QCD sum rule method in understanding the symmetric nuclear matter in terms of QCD variables to the asymmetric nuclear matter case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  2. K.S. Jeong, S.H. Lee, Phys. Rev. C 87, 015204 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  3. L.W. Chen, Phys. Rev. C 83, 044308 (2011).

    Article  ADS  Google Scholar 

  4. S.J. Wallace, Annu. Rev. Nucl. Part. Sci. 37, 267 (1987).

    Article  ADS  Google Scholar 

  5. B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  6. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979).

    Article  ADS  Google Scholar 

  7. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979).

    Article  ADS  Google Scholar 

  8. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 519 (1979).

    Article  ADS  Google Scholar 

  9. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985).

    Article  ADS  Google Scholar 

  10. B.L. Ioffe, Nucl. Phys. B 188, 317 (1981) 191.

    Article  ADS  Google Scholar 

  11. Y. Chung, H.G. Dosch, M. Kremer, D. Schall, Phys. Lett. B 102, 175 (1981).

    Article  ADS  Google Scholar 

  12. Y. Chung, H.G. Dosch, M. Kremer, D. Schall, Nucl. Phys. B 197, 55 (1982).

    Article  ADS  Google Scholar 

  13. E.G. Drukarev, E.M. Levin, Nucl. Phys. A 511, 679 (1990) 516.

    Article  ADS  Google Scholar 

  14. E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. 27, 77 (1991).

    Article  ADS  Google Scholar 

  15. T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. Lett. 67, 961 (1991).

    Article  ADS  Google Scholar 

  16. R.J. Furnstahl, D.K. Griegel, T.D. Cohen, Phys. Rev. C 46, 1507 (1992).

    Article  ADS  Google Scholar 

  17. X.m. Jin, T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 47, 2882 (1993).

    Article  ADS  Google Scholar 

  18. X.m. Jin, M. Nielsen, T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 49, 464 (1994).

    Article  ADS  Google Scholar 

  19. T.D. Cohen, R.J. Furnstahl, D.K. Griegel, X.-m. Jin, Prog. Part. Nucl. Phys. 35, 221 (1995).

    Article  ADS  Google Scholar 

  20. E.G. Drukarev, M.G. Ryskin, V.A. Sadovnikova, Phys. Rev. C 70, 065206 (2004).

    Article  ADS  Google Scholar 

  21. E.G. Drukarev, M.G. Ryskin, V.A. Sadovnikova, Phys. At. Nucl. 75, 334 (2012).

    Article  Google Scholar 

  22. E.L. Kryshen, Phys. Rev. C 84, 055205 (2011).

    Article  ADS  Google Scholar 

  23. H.D. Politzer, Nucl. Phys. B 172, 349 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  24. E.V. Shuryak, A.I. Vainshtein, Nucl. Phys. B 199, 451 (1982).

    Article  ADS  Google Scholar 

  25. E.V. Shuryak, A.I. Vainshtein, Phys. Lett. B 105, 65 (1981).

    Article  ADS  Google Scholar 

  26. R.L. Jaffe, M. Soldate, Phys. Lett. B 105, 467 (1981).

    Article  ADS  Google Scholar 

  27. R.L. Jaffe, M. Soldate, Phys. Rev. D 26, 49 (1982).

    Article  ADS  Google Scholar 

  28. R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 207, 1 (1982).

    Article  ADS  Google Scholar 

  29. R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 212, 29 (1983).

    Article  ADS  Google Scholar 

  30. S. Choi, T. Hatsuda, Y. Koike, S.H. Lee, Phys. Lett. B 312, 351 (1993).

    Article  ADS  Google Scholar 

  31. S.H. Lee, Phys. Rev. D 49, 2242 (1994).

    Article  ADS  Google Scholar 

  32. S. Kubis, M. Kutschera, Phys. Lett. B 399, 191 (1997).

    Article  ADS  Google Scholar 

  33. G.E. Brown, K. Kubodera, M. Rho, Phys. Lett. B 192, 273 (1987).

    Article  ADS  Google Scholar 

  34. Seung Ho Choi, Master’s thesis, Yonsei University, Seoul (1991).

  35. R. Thomas, T. Hilger, B. Kampfer, Nucl. Phys. A 795, 19 (2007).

    Article  ADS  Google Scholar 

  36. R.L. Jaffe, M. Soldate, Higher Twist In Electroproduction: A Systematic Qcd Analysis, MIT-CTP-931, MIT 1981.

  37. V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Houng Lee.

Additional information

Communicated by A. Ramos

Contribution to the Topical Issue “Nuclear Symmetry Energy” edited by Bao-An Li, Ángels Ramos, Giuseppe Verde, Isaac Vidaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, K.S., Lee, S.H. Symmetry energy from QCD sum rules. Eur. Phys. J. A 50, 16 (2014). https://doi.org/10.1140/epja/i2014-14016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14016-y

Keywords

Navigation