Skip to main content
Log in

Dissecting deuteron Compton scattering I: The observables with polarised initial states

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 16 April 2018

An Erratum to this article was published on 31 May 2017

This article has been updated

Abstract

A complete set of linearly independent observables in Compton scattering with arbitrarily polarised real photons off an arbitrarily polarised spin-1 target is introduced, for the case that the final-state polarisations are not measured. Adopted from the one widely used, e.g., in deuteron photo-dissociation, it consists of 18 terms: the unpolarised cross section, the beam asymmetry, 4 target asymmetries and 12 asymmetries in which both beam and target are polarised. They are expressed by the helicity amplitudes and —where available— related to observables discussed by other authors. As application to deuteron Compton scattering, their dependence on the (isoscalar) scalar and spin dipole polarisabilities of the nucleon is explored in Chiral Effective Field Theory with dynamical Δ(1232) degrees of freedom at order e 2 δ 3. Some asymmetries are sensitive to only one or two dipole polarisabilities, making them particularly attractive for experimental studies. At a photon energy of 100 MeV, a set of 5 observables is identified from which one may be able to extract the spin polarisabilities of the nucleon. These are experimentally realistic but challenging and mostly involve tensor-polarised deuterons. Relative to Compton scattering from a nucleon, sensitivity to the “mixed” spin polarisabilities γ E1M2 and γ M1E2 is increased because of the interference with the D wave component of the deuteron and with its pion-exchange current. An interactive Mathematica 9.0 notebook with results for all observables at photon energies up to 120 MeV is available from hgrie@gwu.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 16 April 2018

    "In addition to the changes of the first erratum, the results of eqs. (17) and (18) in the paper are not correct. The corrections needed appear in this erratum."

References

  1. H.W. Griesshammer, J.A. McGovern, D.R. Phillips, G. Feldman, Prog. Part. Nucl. Phys. 67, 841 (2012) arXiv:1203.6834 [nucl-th].

    Article  ADS  Google Scholar 

  2. H. Paetz gen. Schieck, Nuclear Physics with Polarized Particles, in Lecture Notes in Physics, Vol. 842 (Springer, 2012).

  3. D.G. Crabb, private communication.

  4. W. Meyer, private communication.

  5. D. Babusci, G. Giordano, A.I. L’vov, G. Matone, A.M. Nathan, Phys. Rev. C 58, 1013 (1998) arXiv:hep-ph/9803347.

    Article  ADS  Google Scholar 

  6. J.W. Chen, X.d. Ji, Y.c. Li, Phys. Rev. C 71, 044321 (2005) arXiv:nucl-th/0408004.

    Article  ADS  Google Scholar 

  7. J.-W. Chen, X.-d. Ji, Y.-c. Li, Phys. Lett. B 620, 33 (2005) arXiv:nucl-th/0408003.

    Article  ADS  Google Scholar 

  8. D. Choudhury, D.R. Phillips, Phys. Rev. C 71, 044002 (2005) arXiv:nucl-th/0411001.

    Article  ADS  Google Scholar 

  9. D. Choudhury, PhD Thesis Ohio University (2006).

  10. H.W. Grießhammer, D. Shukla, Eur. Phys. J. A 46, 249 (2010) 48.

    Article  ADS  Google Scholar 

  11. J.W. Chen, Nucl. Phys. A 653, 375 (1999) arXiv:nucl-th/9810021.

    Article  ADS  Google Scholar 

  12. J. Karakowski, arXiv:nucl-th/9901011.

  13. J.J. Karakowski, G.A. Miller, Phys. Rev. C 60, 014001 (1999) arXiv:nucl-th/9901018.

    Article  ADS  Google Scholar 

  14. H. Arenhovel, M. Sanzone, Few-Body Syst. Suppl. 3, 1 (1991).

    Article  Google Scholar 

  15. H.W. Grießhammer, in preparation.

  16. H.W. Grießhammer, T.R. Hemmert, Phys. Rev. C 65, 045207 (2002) arXiv:nucl-th/0110006.

    Article  ADS  Google Scholar 

  17. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004) arXiv:nucl-th/0307070.

    Article  ADS  Google Scholar 

  18. B.R. Holstein, arXiv:hep-ph/0010129.

  19. W. Detmold, B.C. Tiburzi, A. Walker-Loud, Phys. Rev. D 81, 054502 (2010) arXiv:1001.1131 [hep-lat].

    Article  ADS  Google Scholar 

  20. M. Engelhardt, PoS LATTICE 2011, 153 (2011) arXiv:1111.3686 [hep-lat].

    Google Scholar 

  21. M. Lujan, A. Alexandru, F. Lee, PoS LATTICE 2011, 165 (2011) arXiv:1111.6288 [hep-lat].

    Google Scholar 

  22. A. Walker-Loud, C.E. Carlson, G.A. Miller, Phys. Rev. Lett. 108, 232301 (2012) arXiv:1203.0254 [nucl-th].

    Article  ADS  Google Scholar 

  23. K. Pachucki, Phys. Rev. A 60, 3593 (1999).

    Article  ADS  Google Scholar 

  24. C.E. Carlson, M. Vanderhaeghen, arXiv:1109.3779 [physics.atom-ph].

  25. M.C. Birse, J.A. McGovern, Eur. Phys. J. A 48, 120 (2012) arXiv:1206.3030 [hep-ph].

    Article  ADS  Google Scholar 

  26. G.A. Miller, Phys. Lett. B 718, 1078 (2013) arXiv:1209.4667 [nucl-th].

    Article  ADS  Google Scholar 

  27. V. Bernard, N. Kaiser, U.G. Meißner, Phys. Rev. Lett. 67, 1515 (1991).

    Article  ADS  Google Scholar 

  28. V. Bernard, N. Kaiser, U.G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995) arXiv:hep-ph/9501384.

    Article  ADS  Google Scholar 

  29. J.A. McGovern, D.R. Phillips, H.W. Grießhammer, Eur. Phys. J. A 49, 12 (2013) arXiv:1210.4104 [nucl-th].

    Article  ADS  Google Scholar 

  30. M. Schumacher, Prog. Part. Nucl. Phys. 55, 567 (2005) arXiv:hep-ph/0501167.

    Article  ADS  Google Scholar 

  31. H.W. Grießhammer, D.R. Phillips, J.A. McGovern, arXiv:1306.2200 [nucl-th].

  32. M.E. Rose, Elementary Theory of Angular Momentum (Wiley, 1957).

  33. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, 1974).

  34. Particle Data Group, Phys. Rev. D 86, 010001 (2012).

    Article  Google Scholar 

  35. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, Eur. Phys. J. A 46, 111 (2010) arXiv:nucl-th/0512063.

    Article  ADS  Google Scholar 

  36. R.P. Hildebrandt, Elastic Compton Scattering from the Nucleon and Deuteron, PhD Thesis Technische Universität München (2005) arXiv:nucl-th/0512064.

  37. V. Pascalutsa, D.R. Phillips, Phys. Rev. C 67, 055202 (2003) arXiv:nucl-th/0212024.

    Article  ADS  Google Scholar 

  38. H.W. Grießhammer, Proceedings Menu 2007, eConf section of the SLAC archive, arXiv:0710.2924.

  39. H.W. Grießhammer, Prog. Part. Nucl. Phys. 55, 215 (2005) arXiv:nucl-th/0411080.

    Article  ADS  Google Scholar 

  40. E.E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991).

    Article  ADS  Google Scholar 

  41. E.E. Jenkins, A.V. Manohar, In Dobogokoe 1991, Proceedings, Effective field theories of the standard model 113 and Calif. Univ. San Diego - UCSD-PTH 91-30 (91/10, rec. Dec.) (201392) p. 26 (see conference index).

  42. T.R. Hemmert, B.R. Holstein, J. Kambor, Phys. Lett. B 395, 89 (1997) arXiv:hep-ph/9606456.

    Article  ADS  Google Scholar 

  43. T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G 24, 1831 (1998) arXiv:hep-ph/9712496.

    Article  ADS  Google Scholar 

  44. S.R. Beane, M. Malheiro, D.R. Phillips, U. van Kolck, Nucl. Phys. A 656, 367 (1999) arXiv:nucl-th/9905023.

    Article  ADS  Google Scholar 

  45. J.L. Friar, Ann. Phys. (NY) 95, 170 (1975).

    Article  ADS  Google Scholar 

  46. J.L. Friar, Phys. Rev. C 16, 1504 (1977).

    Article  ADS  Google Scholar 

  47. H. Arenhovel, Z. Phys. A 297, 129 (1980).

    Article  ADS  Google Scholar 

  48. M. Weyrauch, H. Arenhovel, Nucl. Phys. A 408, 425 (1983).

    Article  ADS  Google Scholar 

  49. E. Epelbaum, W. Gloeckle, U.-G. Meißner, Nucl. Phys. A 671, 295 (2000) arXiv:nucl-th/9910064.

    Article  ADS  Google Scholar 

  50. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  51. R. Miskimen, Measuring the Spin-Polarizabilities of the Proton at , presentation at the INT workshop on Soft Photons and Light Nuclei, 17 June 2008, and private communication.

  52. K. Aulenbacher, talk given at the Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams with Energy up to 300 MeV, MIT, 2013, in preparation.

  53. L.C. Maximon, Phys. Rev. C 39, 347 (1989).

    Article  ADS  Google Scholar 

  54. S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Nucl. Phys. A 747, 311 (2005) arXiv:nucl-th/0403088.

    Article  ADS  Google Scholar 

  55. V.G. Stoks, R.A. Klomp, C.P. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).

    Article  ADS  Google Scholar 

  56. R.P. Hildebrandt, H.W. Grießhammer, T.R. Hemmert, D.R. Phillips, Nucl. Phys. A 748, 573 (2005) arXiv:nucl-th/0405077.

    Article  ADS  Google Scholar 

  57. S.R. Beane, M. Malheiro, J.A. McGovern, D.R. Phillips, U. van Kolck, Phys. Lett. B 567, 200 (2003) arXiv:nucl-th/0209002.

    Article  ADS  Google Scholar 

  58. D.L. Hornidge, B.J. Warkentin, R. Igarashi, J.C. Bergstrom, E.L. Hallin, N.R. Kolb, R.E. Pywell, D.M. Skopik et al., Phys. Rev. Lett. 84, 2334 (2000) arXiv:nucl-ex/9909015.

    Article  ADS  Google Scholar 

  59. M.I. Levchuk, A.I. L’vov, Nucl. Phys. A 674, 449 (2000) arXiv:nucl-th/9909066.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald W. Grießhammer.

Additional information

Communicated by M.C. Birse

For Karl Heinz Lindenberger (1925–2012)

An erratum to this article can be found online at http://dx.doi.org/10.1140/epja/i2017-12311-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grießhammer, H.W. Dissecting deuteron Compton scattering I: The observables with polarised initial states. Eur. Phys. J. A 49, 100 (2013). https://doi.org/10.1140/epja/i2013-13100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13100-2

Keywords

Navigation