Skip to main content
Log in

Identifying chiral bands in real nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The application of the presently used fingerprints of chiral bands (originally derived for strongly broken chirality) is investigated for real chiral systems. In particular the chiral fingerprints concerning the B(M1) staggering patterns and the energy staggering are studied. It is found that both fingerprints show considerable changes for real chiral systems, a behaviour that creates a significant risk for misinterpretation of the experimental data and can lead to a failure to identify real chiral systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Frauendorf, J. Meng, Nucl. Phys. A 617, 131 (1997)

    Article  ADS  Google Scholar 

  2. T. Koike, K. Starosta, I. Hamamoto, Phys. Rev. Lett., 93, 172502 (2004)

    Article  ADS  Google Scholar 

  3. C. Vaman et al., Phys. Rev. Lett. 92, 032501 (2004)

    Article  ADS  Google Scholar 

  4. T. Koike, Nucl. Phys. A 834, 36c (2010)

    Article  ADS  Google Scholar 

  5. E.A. Lawrie, O. Shirinda, Phys. Lett. B 689, 66 (2010)

    Article  ADS  Google Scholar 

  6. K. Starosta et al., Phys. Rev. Lett. 86, 971 (2001)

    Article  ADS  Google Scholar 

  7. P.B. Semmes, I. Ragnarsson, in Proceedings of the International Conference on High-Spin Physics and Gamma-Soft nuclei, Pittsburg, 1990, edited by J.X. Saladin, R.A. Sorenson, C.M. Vincent (World Scientific, 1991) p. 500 and in Proceedings of ‘Future Directions in Nuclear Physics with 4$\pi$ Gamma Detection Systems of the New Generation’, edited by J. Dudek, B. Haas, AIP Conf. Proc., Vol. 259 (AIP, 1992) p. 566

  8. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985)

    Article  ADS  Google Scholar 

  9. N. Tajima, Nucl. Phys. A 572, 365 (1994)

    Article  ADS  Google Scholar 

  10. B. Qi, S.Q. Zhang, S.Y. Wang, J.M. Yao, J. Meng, Phys. Rev. C 79, 041302(R) (2009)

    Article  ADS  Google Scholar 

  11. Ch. Droste et al., Eur. Phys. J. A 42, 79 (2009)

    Article  ADS  Google Scholar 

  12. S.Q. Zhang, B. Qi, S.Y. Wang, J. Meng, Phys. Rev. C 75, 044307 (2007)

    Article  ADS  Google Scholar 

  13. E. Grodner et al., Phys. Lett. B 703, 46 (2011)

    Article  ADS  Google Scholar 

  14. E. Grodner et al., Phys. Rev. Lett. 97, 172501 (2006)

    Article  ADS  Google Scholar 

  15. Wang Lie-Lin et al., Chin. Phys. C 33, 173 (2009)

    Article  ADS  Google Scholar 

  16. D. Tonev et al., Phys. Rev. Lett. 96, 052501 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Shirinda.

Additional information

Communicated by M.C. Birse

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirinda, O., Lawrie, E.A. Identifying chiral bands in real nuclei. Eur. Phys. J. A 48, 118 (2012). https://doi.org/10.1140/epja/i2012-12118-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12118-2

Keywords

Navigation