Skip to main content
Log in

The pp → nK+Σ+ reaction at 2.95 GeV/c

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The total cross-section of the pp → nK+Σ+ reaction was measured at COSY using a proton beam with a momentum of p beam = 2.95 GeV/c, corresponding to an excess energy of ε = 129 MeV. The neutron detector COSYnus was added to the time-of-flight spectrometer COSY-TOF which tracks charged primary and secondary particles. Thus a complete reconstruction of the exit channel was feasible by exploiting for both neutron and kaon their time and direction of flight as well as the decay of the Σ+-hyperon into a neutral and a charged particle. The cross-section was determined to be between σ = 2.0 and 5.9 μb with 68% confidence. The experimental data published so far by various groups for this reaction are assessed as a whole. We conclude that either the theoretical models lack some important aspect of the reaction mechanism if one takes the experimental data at face value, or the experimental data are inconsistent and therefore theoretical descriptions must fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abdel-Bary et al., Eur. Phys. J. A 46, 27 (2010).

    Article  ADS  Google Scholar 

  2. M. Abdel-Bary et al., Eur. Phys. J. A 48, 23 (2012).

    Article  ADS  Google Scholar 

  3. R.I. Louttit et al., Phys. Rev. 123, 1465 (1961).

    Article  ADS  Google Scholar 

  4. W. Chinowsky et al., Phys. Rev. 165, 1466 (1968).

    Article  ADS  Google Scholar 

  5. I. Sondhi, Phys. Lett. B 26, 645 (1968).

    Article  ADS  Google Scholar 

  6. UCLA 1033 (1968) PhD Thesis.

  7. T. Rozek et al., Phys. Lett. B 643, 251 (2006).

    Article  ADS  Google Scholar 

  8. Yu. Valdau et al., Phys. Lett. B 652, 245 (2007).

    Article  ADS  Google Scholar 

  9. Yu. Valdau et al., Phys. Rev. C 81, 045208 (2010).

    Article  ADS  Google Scholar 

  10. A. Budzanowski et al., Phys. Lett. B 692, 10 (2010).

    Article  ADS  Google Scholar 

  11. A. Sibirtsev et al., Eur. Phys. J. A 32, 229 (2007).

    Article  ADS  Google Scholar 

  12. W.J. Hogan et al., Phys. Rev. 166, 166 (1968).

    Article  Google Scholar 

  13. J.T. Reed et al., Phys. Rev. 168, 1495 (1968).

    Article  ADS  Google Scholar 

  14. R. Siebert et al., Nucl. Phys. A 567, 819 (1994).

    Article  ADS  Google Scholar 

  15. Yu. Valdau, C. Wilkin, Phys. Lett. B 696, 23 (2011).

    Article  ADS  Google Scholar 

  16. R. Bilger et al., Phys. Lett. B 420, 217 (1998).

    Article  ADS  Google Scholar 

  17. A. Hassan et al., Nucl. Instrum. Methods Phys. Res. A 425, 403 (1999).

    Article  ADS  Google Scholar 

  18. M. Dahmen et al., Nucl. Instrum. Methods Phys. Res. A 348, 97 (1994).

    Article  ADS  Google Scholar 

  19. A. Böhm et al., Nucl. Instrum. Methods Phys. Res. A 443, 238 (2000).

    Article  ADS  Google Scholar 

  20. L. Karsch et al., Nucl. Instrum. Methods Phys. Res. A 460, 362 (2001).

    Article  ADS  Google Scholar 

  21. L. Karsch, PhD Thesis, Technische Universität Dresden (2005).

  22. Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  23. A. Baldini, Landoldt-Børnstein: Numerical Data and Functional Relationships in Science and Technology, New Series Vol. I/12b (Springer, New York, Heidelberg, 1988). .

  24. S. Brand, PhD Thesis, Ruhr-Universität Bochum (1995).

  25. U. Zielinsky, PhD Thesis, Ruhr-Universität Bochum (1999).

  26. P. Cloth, Programm INC77, Version 1.0, FZ Jülich, 1992.

  27. H.W. Bertini, Phys. Rev. 131, 1821 (1963).

    Article  ADS  Google Scholar 

  28. H.W. Bertini, Phys. Rev. 188, 1711 (1969).

    Article  ADS  Google Scholar 

  29. M. Abdel-Bary et al., Phys. Lett. B 688, 142 (2010).

    Article  ADS  Google Scholar 

  30. D. Albers et al., Phys. Rev. Lett. 78, 1652 (1997).

    Article  ADS  Google Scholar 

  31. G. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998).

    Article  ADS  Google Scholar 

  32. The ROOT system homepage, http://root.cern.ch/root/html/TFeldmanCousins.html.

  33. G.Q. Li, C.M. Ko, Nucl. Phys. A 594, 439 (1995).

    Article  ADS  Google Scholar 

  34. K. Tsushima et al., Phys. Rev. C 59, 369 (2000).

    Article  ADS  Google Scholar 

  35. R. Shyam, Phys. Rev. C 73, 035211 (2006).

    Article  ADS  Google Scholar 

  36. Ju-Jun Xie, Bing-Song Zou, Phys. Lett. B 649, 405 (2007).

    Article  Google Scholar 

  37. Cao Xu et al., Chin. Phys. Lett. 25, 888 (2008).

    Article  ADS  Google Scholar 

  38. A. Sibirtsev et al., Eur. Phys. J. A 27, 296 (2006).

    Google Scholar 

  39. G. Feldman, P.T. Matthews, Phys. Rev. 109, 546 (1958).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to H. Freiesleben.

Additional information

Communicated by P. Salabura

Rights and permissions

Reprints and permissions

About this article

Cite this article

The COSY-TOF Collaboration., Abdel-Bary, M., Abdel-Samad, S. et al. The pp → nK+Σ+ reaction at 2.95 GeV/c. Eur. Phys. J. A 48, 37 (2012). https://doi.org/10.1140/epja/i2012-12037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12037-2

Keywords

Navigation