Skip to main content
Log in

Theoretical study of incoherent φ photoproduction on a deuteron target

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the photoproduction of φ mesons in deuteron, paying attention to the modification of the cross-section from bound protons to the free ones. For this purpose we take into account Fermi motion in single scattering and rescattering of φ to account for φ absorption on a second nucleon as well as the rescattering of the proton on the neutron. We find that the contribution of the double scattering for φ is much smaller than the typical cross-section of γp → φp in free space, which implies a very small screening of the φ production in deuteron. The contribution from the proton rescattering, on the other hand, is found to be not negligible compared to the cross-section of γp → φp in free space, and leads to a moderate reduction of the φ photoproduction cross-section on a deuteron at forward angles if the LEPS set-up is taken into account. The Fermi motion allows contribution of the single scattering in regions forbidden by phase-space in the free case. In particular, we find that for momentum transfer squared close to the maximum value, the Fermi motion changes drastically the shape of dσ/dt, to the point that the ratio of this cross-section to the free one becomes very sensitive to the precise value of t chosen, or the size of the bin used in an experimental analysis. Hence, this particular region of t does not seem to be the most indicated to find effects of a possible φ absorption in the deuteron. This reaction is studied theoretically as a function of t and the results are contrasted with recent experiments at LEPS and Jefferson Lab. The effect of the experimental angular cuts at LEPS is also discussed, providing guidelines for future experimental analyses of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ballam et al., Phys. Rev. D 7, 3150 (1973).

    Article  ADS  Google Scholar 

  2. H.J. Besch, G. Hartmann, R. Kose, F. Krautschneider, W. Paul, U. Trinks, Nucl. Phys. B 70, 257 (1974).

    Article  ADS  Google Scholar 

  3. H.J. Behrend et al., Nucl. Phys. B 144, 22 (1978).

    Article  ADS  Google Scholar 

  4. D.P. Barber et al., Z. Phys. C 12, 1 (1982).

    Article  ADS  Google Scholar 

  5. CLAS Collaboration (E. Anciant et al.), Phys. Rev. Lett. 85, 4682 (2000) arXiv:hep-ex/0006022.

    Article  ADS  Google Scholar 

  6. J. Barth et al., Eur. Phys. J. A 17, 269 (2003).

    Article  ADS  Google Scholar 

  7. T.H. Bauer, R.D. Spital, D.R. Yennie, F.M. Pipkin, Rev. Mod. Phys. 50, 261 (1978) 51.

    Article  ADS  Google Scholar 

  8. A.I. Titov, S.N. Yang, Y.s. Oh, Nucl. Phys. A 618, 259 (1997) arXiv:nucl-th/9612059.

    Article  ADS  Google Scholar 

  9. A.I. Titov, Y.s. Oh, S.N. Yang, Phys. Rev. Lett. 79, 1634 (1997) arXiv:nucl-th/9702015.

    Article  ADS  Google Scholar 

  10. A.I. Titov, Y.s. Oh, S.N. Yang, T. Morii, Phys. Rev. C 58, 2429 (1998) arXiv:nucl-th/9804043.

    Article  ADS  Google Scholar 

  11. A.I. Titov, T.S.H. Lee, H. Toki, Phys. Rev. C 59, 2993 (1999) arXiv:nucl-th/9812074.

    Article  ADS  Google Scholar 

  12. A.I. Titov, T.S. Lee, H. Toki, O. Streltsova, Phys. Rev. C 60, 035205 (1999).

    Article  ADS  Google Scholar 

  13. L.S. Kisslinger, W.h. Ma, Phys. Lett. B 485, 367 (2000) arXiv:hep-ph/9905479.

    Article  ADS  Google Scholar 

  14. F.J. Llanes-Estrada, S.R. Cotanch, P.J. de A. Bicudo, J.E.F. Ribeiro, A.P. Szczepaniak, Nucl. Phys. A 710, 45 (2002) arXiv:hep-ph/0008212.

    Article  ADS  Google Scholar 

  15. LEPS Collaboration (T. Mibe et al.), Phys. Rev. Lett. 95, 182001 (2005) arXiv:nucl-ex/0506015.

    Article  ADS  Google Scholar 

  16. A.I. Titov, T. Nakano, S. Date, Y. Ohashi, Mod. Phys. Lett. A 23, 2301 (2008).

    Article  ADS  Google Scholar 

  17. LEPS Collaboration (W.C. Chang et al.), Phys. Lett. B 684, 6 (2010) arXiv:0907.1705 [nucl-ex].

    Article  ADS  Google Scholar 

  18. A.I. Titov, B. Kampfer, Phys. Rev. C 76, 035202 (2007) arXiv:0705.2010 [nucl-th].

    Article  ADS  Google Scholar 

  19. T. Ishikawa et al., Phys. Lett. B 608, 215 (2005) arXiv:nucl-ex/0411016.

    Article  ADS  Google Scholar 

  20. E. Hernandez, E. Oset, Z. Phys. A 341, 201 (1992).

    Article  ADS  Google Scholar 

  21. R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000) arXiv:hep-ph/9909229.

    Article  Google Scholar 

  22. R.S. Hayano, T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010) arXiv:0812.1702 [nucl-ex].

    Article  ADS  Google Scholar 

  23. V.K. Magas, L. Roca, E. Oset, Phys. Rev. C 71, 065202 (2005) arXiv:nucl-th/0403067.

    Article  ADS  Google Scholar 

  24. X. Qian, W. Chen, H. Gao, K. Hicks, K. Kramer, J.M. Laget, T. Mibe, Y. Qiang et al., Phys. Lett. B 696, 338 (2011) arXiv:1011.1305 [nucl-ex].

    Article  ADS  Google Scholar 

  25. T.C. Rogers, M.M. Sargsian, M.I. Strikman, Phys. Rev. C 73, 045202 (2006) arXiv:hep-ph/0509101.

    Article  ADS  Google Scholar 

  26. Particle Data Group (C. Amsler et al.), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  27. D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A 42, 257 (2009).

    Article  ADS  Google Scholar 

  28. M. Lacombe, B. Loiseau, R. Vinh Mau, J. Cote, P. Pires, R. de Tourreil, Phys. Lett. B 101, 139 (1981).

    Article  ADS  Google Scholar 

  29. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Article  ADS  Google Scholar 

  30. NN-OnLine, http://nn-online.org/.

  31. M. Miyabe, Doctor thesis (2010), in private communication.

  32. LEPS Collaboration (T. Nakano et al.), Phys. Rev. C 79, 025210 (2009).

    Article  ADS  Google Scholar 

  33. A.M. Torres, E. Oset, Phys. Rev. C 81, 055202 (2010) arXiv:1003.1098 [nucl-th].

    Article  ADS  Google Scholar 

  34. CLAS Collaboration (M.H. Wood et al.), Phys. Rev. Lett. 105, 112301 (2010) arXiv:1006.3361 [nucl-ex].

    Article  ADS  Google Scholar 

  35. A. Polyanskiy, M. Hartmann, Y.T. Kiselev, E.Y. Paryev, M. Buscher, D. Chiladze, S. Dymov, A. Dzyuba et al., Phys. Lett. B 695, 74 (2011) arXiv:1008.0232 [nucl-ex].

    Article  ADS  Google Scholar 

  36. E. Oset, A. Ramos, Nucl. Phys. A 679, 616 (2001).

    Article  ADS  Google Scholar 

  37. D. Cabrera, M.J. Vicente Vacas, Phys. Rev. C 67, 045203 (2003).

    Article  ADS  Google Scholar 

  38. R.C. Carrasco, E. Oset, L.L. Salcedo, Nucl. Phys. A 541, 585 (1992).

    Article  ADS  Google Scholar 

  39. D. Cabrera, L. Roca, E. Oset, H. Toki, M.J. Vicente Vacas, Nucl. Phys. A 733, 130 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sekihara.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekihara, T., Martínez Torres, A., Jido, D. et al. Theoretical study of incoherent φ photoproduction on a deuteron target. Eur. Phys. J. A 48, 10 (2012). https://doi.org/10.1140/epja/i2012-12010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12010-1

Keywords

Navigation