Skip to main content
Log in

Coulomb reorientation in near-barrier fusion of deformed+spherical systems in classical dynamical approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A classical rigid-body dynamics model which takes into account all the translational and the rotational degrees of freedom is developed to study Coulomb reorientation of deformed nuclei in heavy-ion collisions. Various aspects of the collision dynamics in the case of near-barrier fusion of 24Mg + 208Pb system due to the Coulomb reorientation are studied; the dependence of the extent of reorientation of the symmetry axis of the deformed nucleus, isotropy of the initial orientations, barrier parameters, and rotational excitation energy are discussed in detail. It is found that the barrier parameters not only depend on the initial orientations of the deformed nucleus but also on the collision energy; with maximum reorientation effect at near- and below-barrier energies. Even small amount of the rotational excitation energy gained by the deformed nucleus at large separation distances is crucial in determining the conditions at the barrier. Study of 154Sm + 16O and 238U + 16O systems involving heavier deformed nuclei shows that the extent of reorientation also depends on the moment of inertia of the deformed nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998) and references therein.

    Article  ADS  Google Scholar 

  2. H. Holm, D. Scharnweber, W. Scheid, W. Greiner, Z. Phys. 231, 450 (1970).

    Article  ADS  Google Scholar 

  3. C. Simenel, Ph. Chomaz, G. de France, Phys. Rev. Lett. 93, 102701 (2004).

    Article  ADS  Google Scholar 

  4. C. Simenel, M. Bender, Ph. Chomaz, T. Duguet, G. de France, arXiv:nucl-th/0605018v1 (2006).

  5. A.S. Umar, V.E. Oberacker, Phys. Rev. C 74, 024606 (2006).

    Article  ADS  Google Scholar 

  6. L.T. Baby, V. Tripathi, J.J. Das, P. Sugathan, N. Madhavan, A.K. Sinha, M.C. Radhakrishna, P.V. Madhusudhana Rao, S.K. Hui, K. Hagino, Phys. Rev. C 62, 014603 (2000).

    Article  ADS  Google Scholar 

  7. B.K. Nayak, R.K. Choudhury, A. Saxena, P.K. Sahu, R.G. Thomas, D.C. Biswas, B.V. John, E.T. Mirgule, Y.K. Gupta, M. Bhike, H.G. Rajprakash, Phys. Rev. C 75, 054615 (2007).

    Article  ADS  Google Scholar 

  8. S.S. Godre, P.R. Desai, Nucl. Phys. A 834, 195 (2010).

    Article  ADS  Google Scholar 

  9. P.R. Desai, PhD Thesis, Veer Narmad South Gujarat University (2009).

  10. P.R. Desai, S.S. Godre, Proceedings of the International Symposium on Nuclear Physics, Mumbai, 2009, edited by R.K. Choudhury, A.K. Mohanty, Alok Saxena, K. Mahata, S. Santra, Vol. 54 (DAE, Mumbai, 2009) p. 294, available at http://www.sympnp.org/proceedings/.

  11. P.R. Desai, S.S. Godre, VNSGU J. Sci. Tech. 1, 58 (2009).

    Google Scholar 

  12. K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999).

    Article  ADS  MATH  Google Scholar 

  13. A.B. Balantekin, N. Takigawa, Rev. Mod. Phys. 70, 77 (1998).

    Article  ADS  Google Scholar 

  14. W. Reisdorf, J. Phys. G 20, 1297 (1994).

    Article  ADS  Google Scholar 

  15. H.J. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C 20, 992 (1979).

    Article  ADS  Google Scholar 

  16. V.Yu. Denisov, N.A. Pilipenko, Phys. Rev. C 76, 014602 (2007).

    Article  ADS  Google Scholar 

  17. N. Takigawa, T. Rumin, N. Ihara, Phys. Rev. C 61, 044607 (2000).

    Article  ADS  Google Scholar 

  18. B.V. Carlson, L.C. Chamon, L.R. Gasques, Phys. Rev. C 70, 057602 (2004).

    Article  ADS  Google Scholar 

  19. J.R. Birkelund, L.E. Tubbs, J.R. Huizenga, J.N. De, D. Sperber, Phys. Rep. 56, 107 (1979).

    Article  ADS  Google Scholar 

  20. P. Bonche, H. Flocard, P.H. Heenen, S.J. Krieger, M.S. Weiss, Nucl. Phys. A 443, 39 (1985).

    Article  ADS  Google Scholar 

  21. K. Washiyama, D. Lacroix, Phys. Rev. C 78, 024610 (2008).

    Article  ADS  Google Scholar 

  22. A.S. Umar, V.E. Oberacker, Eur. Phys. J. A 39, 243 (2009).

    Article  ADS  Google Scholar 

  23. A.S. Umar, V.E. Oberacker, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 81, 064607 (2010).

    Article  ADS  Google Scholar 

  24. V.E. Oberacker, A.S. Umar, J.A. Maruhn, P.-G. Reinhard, Phys. Rev. C 82, 034603 (2010).

    Article  ADS  Google Scholar 

  25. H. Holm, W. Greiner, Phys. Rev. Lett. 26, 1647 (1971).

    Article  ADS  Google Scholar 

  26. A. Diaz-Torres, D.J. Hinde, J.A. Tostevin, M. Dasgupta, L.R. Gasques, Phys. Rev. Lett. 98, 152701 (2007).

    Article  ADS  Google Scholar 

  27. A.S. Denikin, V.I. Zagrebaev, P. Descouvemont, Phys. Rev. C 79, 024605 (2009).

    Article  ADS  Google Scholar 

  28. S.S. Godre, Y.R. Waghmare, Phys. Rev. C 36, 1632 (1987).

    Article  ADS  Google Scholar 

  29. S.S. Godre, Nucl. Phys. A 734, E17 (2004).

    Article  ADS  Google Scholar 

  30. Y.R. Waghmare, Phys. Rev. 136, B1261 (1964).

    Article  ADS  Google Scholar 

  31. W.D. Myers, W.J. Swiatecki, Ann. Phys. (N.Y.) 55, 395 (1969).

    Article  ADS  Google Scholar 

  32. S.S. Godre, P.R. Desai, Proceedings of the DAE Symposium on Nuclear Physics, Roorkee, 2008, edited by R.K. Choudhury, Alok Saxena, B.J. Roy, Vol. 53 (DAE, Mumbai, 2008) p. 341.

  33. A.H. Wapstra, K. Bos, At. Data Nucl. Data Tables 19, 177 (1977).

    Article  ADS  Google Scholar 

  34. H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  35. P. Moller, J.R. Nix, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  36. A.J. Maciejewski, Celest. Mech. Dyn. Astron. 63, 1 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicist, 4th edition (Academic Press, USA, 1995).

  38. D.M. Brink, G.R. Satchler, Angular Momentum, 2nd edition (Clarendon, Oxford, 1979).

  39. Evaluated Nuclear Structure Data File (ENSDF), National Nuclear Data Center, Brookhaven National Laboratory, http://www.nndc.bnl.gov/ensdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Godre.

Additional information

Communicated by T. Bíró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, P.R., Godre, S.S. Coulomb reorientation in near-barrier fusion of deformed+spherical systems in classical dynamical approach. Eur. Phys. J. A 47, 146 (2011). https://doi.org/10.1140/epja/i2011-11146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11146-8

Keywords

Navigation