Skip to main content
Log in

A new cluster model interpretation of the anomalous lifetime of 14C

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A new cluster model solution to the long-standing nuclear structure problem of describing the anomalously long lifetime of 14C is presented. Related beta-decay data for 14O to states in 14N, gamma-decay data between low-lying positive parity states in 14N and the elastic and inelastic magnetic dipole electron scattering from 14N data are all shown to be very accurately described by the model. The shapes of the beta spectra for the A = 14 system are also well reproduced by the model. The model invokes four-nucleon tetrahedral symmetric spatial correlations arising from three- and four-nucleon interactions, which yields a high degree of SU(4) singlet structure for the clusters and a tetrahedral intrinsic shape for the doubly magic 16O ground state. The large quadrupole moment of the 14N ground state is obtained here for the first time and arises because of the almost 100% d-wave deuteron-like-hole cluster structure inherent in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.R. Inglis, Rev. Mod. Phys. 25, 390 (1953).

    Article  ADS  Google Scholar 

  2. B. Jancovich, I. Talmi, Phys. Rev. 95, 289 (1954).

    Article  ADS  Google Scholar 

  3. W.M. Visscher, R.A. Ferrell, Phys. Rev. 107, 781 (1957).

    Article  ADS  Google Scholar 

  4. L. Zamick, D.C. Zheng, M. Fayache, Phys. Rev. C 51, 1253 (1995).

    Article  ADS  Google Scholar 

  5. M. Fayache, L. Zamick, H. Müther, Phys. Rev. C 60, 067305 (1999).

    Article  ADS  Google Scholar 

  6. R. Sherr et al., Phys. Rev. 100, 945 (1955).

    Article  ADS  Google Scholar 

  7. J.P. Elliott, Phil. Mag. 1, 503 (1956).

    Article  ADS  Google Scholar 

  8. I. Talmi, Phys. Rev. C 39, 284 (1989).

    Article  ADS  Google Scholar 

  9. S. Aroua et al., Nucl. Phys. A 720, 71 (2003).

    Article  ADS  Google Scholar 

  10. J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 79, 054331 (2009) and references therein

    Article  ADS  Google Scholar 

  11. P. Maris et al., Phys. Rev. Lett. 106, 202502 (2011).

    Article  ADS  Google Scholar 

  12. H. Genz et al., Z. Phys. A 341, 9 (1991).

    Article  ADS  Google Scholar 

  13. R.L. Huffman et al., Phys. Rev. C 35, 1 (1987).

    Article  ADS  Google Scholar 

  14. K. Amos, D. Koetsier, D. Kurath, Phys. Rev. C 40, 374 (1989).

    Article  ADS  Google Scholar 

  15. J.A. Wheeler, Phys. Rev. 52, 1083 (1937).

    Article  ADS  MATH  Google Scholar 

  16. D.M. Dennison, Phys. Rev. 57, 454 (1940).

    Article  ADS  Google Scholar 

  17. D.M. Dennison, Phys. Rev. 96, 374 (1954).

    Article  ADS  Google Scholar 

  18. S.L. Kameny, Phys. Rev. 103, 358 (1956).

    Article  ADS  Google Scholar 

  19. M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

    Article  ADS  Google Scholar 

  20. D. Robson, Nucl. Phys. A 308, 381 (1978).

    Article  ADS  Google Scholar 

  21. D. Robson, Prog. Part. Nucl. Phys. 8, 257 (1982).

    Article  ADS  Google Scholar 

  22. D. Robson, Phys. Rev. D 35, 1018, 1029 (1987).

    ADS  Google Scholar 

  23. C. Long, D. Robson, Nucl. Phys. A 474, 627 (1987).

    Article  ADS  Google Scholar 

  24. J.S. McCarthy, I. Sick, R.R. Whitney, Phys. Rev. C 15, 1396 (1977).

    Article  ADS  Google Scholar 

  25. J.A. Nolen, J.P. Schiffer, Ann. Rev. Nucl. Sci. 19, 471 (1969).

    Article  ADS  Google Scholar 

  26. I.S. Towner, J.C. Hardy, Phys. Rev. C 72, 055501 (2005).

    Article  ADS  Google Scholar 

  27. W.T. Chou, E.K. Warburton, B.A. Brown, Phys. Rev. C 47, 163 (1993).

    Article  ADS  Google Scholar 

  28. F.E. Wietfeldt et al., Phys. Rev. C 52, 1028 (1995).

    Article  ADS  Google Scholar 

  29. G.S. Sidhu, J.B. Gerhart, Phys. Rev. 148, 1024 (1966) see also ref. 24

    Article  ADS  Google Scholar 

  30. A. Garcia, B.A. Brown, Phys. Rev. C 52, 3416 (1995).

    Article  ADS  Google Scholar 

  31. E.K. Warburton, B.A. Brown, Phys. Rev. C 46, 923 (1992).

    Article  ADS  Google Scholar 

  32. A. Negret et al., Phys. Rev. Lett. 97, 062502 (2006).

    Article  ADS  Google Scholar 

  33. H. Crannell et al., Nucl. Phys. A 278, 253 (1977).

    Article  ADS  Google Scholar 

  34. R.S. Willey, Nucl. Phys. 40, 529 (1963).

    Article  Google Scholar 

  35. R.P. Singhal et al., Phys. Rev. C 28, 513 (1983).

    Article  ADS  Google Scholar 

  36. R.L. Huffman et al., Phys. Lett. B 139, 249 (1984).

    Article  ADS  Google Scholar 

  37. N.J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).

    Article  ADS  Google Scholar 

  38. J.W. de Vries et al., Phys. Lett. B 205, 22 (1988).

    Article  ADS  Google Scholar 

  39. F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991) Table 2

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Robson.

Additional information

Communicated by A. Schwenk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, D. A new cluster model interpretation of the anomalous lifetime of 14C. Eur. Phys. J. A 47, 95 (2011). https://doi.org/10.1140/epja/i2011-11095-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11095-2

Keywords

Navigation