Skip to main content
Log in

Quasi-free photoproduction of η-mesons off the deuteron

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Precise data for quasi-free photoproduction of η-mesons off the deuteron have been measured at the Bonn ELSA accelerator with the combined Crystal Barrel/TAPS detector for incident photon energies up to 2.5GeV. The η-mesons have been detected in coincidence with recoil protons and neutrons. Possible nuclear effects like Fermi motion and re-scattering can be studied via a comparison of the quasi-free reaction off the bound proton to η-production off the free proton. No significant effects beyond the folding of the free cross-section with the momentum distribution of the bound protons have been found. These Fermi motion effects can be removed by an analysis using the invariant mass of the η-nucleon pairs reconstructed from the final-state four-momenta of the particles. The total cross-section for quasi-free η-photoproduction off the neutron reveals even without correction for Fermi motion a pronounced bump-like structure around 1GeV of incident photon energy, which is not observed for the proton. This structure is even narrower in the invariant-mass spectrum of the η-neutron pairs. Position and width of the peak in the invariant-mass spectrum are W ≈ 1665 MeV and FWHM Γ ≈ 25 MeV. The data are compared to the results of different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Dürr et al., Science 322, 1224 (2008)

    Article  ADS  Google Scholar 

  2. J. Bulava et al., Phys. Rev. D 82, 014507 (2010)

    Article  ADS  Google Scholar 

  3. T. Burch et al., Phys. Rev. D 74, 014504 (2006)

    Article  ADS  Google Scholar 

  4. S. Basak et al., Phys. Rev. D 76, 074504 (2007)

    Article  ADS  Google Scholar 

  5. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 241, 241 (2000)

    Article  ADS  Google Scholar 

  6. E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010)

    Article  ADS  Google Scholar 

  7. M. Anselmino et al., Rev. Mod. Phys. 65, 1199 (1993)

    Article  ADS  Google Scholar 

  8. R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994)

    Article  ADS  Google Scholar 

  9. N. Isgur, J. Paton, Phys. Rev. D 31, 2910 (1985)

    Article  ADS  Google Scholar 

  10. E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 585, 243 (2004)

    Article  ADS  Google Scholar 

  11. V.D. Burkert, T.-S. Lee, Int. J. Mod. Phys. E 13, 1035 (2004)

    Article  ADS  Google Scholar 

  12. B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)

    Article  ADS  Google Scholar 

  13. R.G. Moorehouse, Phys. Rev. Lett. 16, 772 (1966)

    Article  ADS  Google Scholar 

  14. I. Jaegle et al., Phys. Rev. Lett. 100, 252002 (2008)

    Article  ADS  Google Scholar 

  15. I. Jaegle et al., Eur. Phys. J. A 47, 11 (2011)

    Article  ADS  Google Scholar 

  16. B. Krusche et al., Phys. Rev. Lett. 74, 3736 (1995)

    Article  ADS  Google Scholar 

  17. J. Ajaka et al., Phys. Rev. Lett. 81, 1797 (1998)

    Article  ADS  Google Scholar 

  18. A. Bock et al., Phys. Rev. Lett. 81, 534 (1998)

    Article  ADS  Google Scholar 

  19. C.S. Armstrong et al., Phys. Rev. D 60, 052004 (1999)

    Article  ADS  Google Scholar 

  20. R. Thompson et al., Phys. Rev. Lett. 86, 1702 (2001)

    Article  ADS  Google Scholar 

  21. F. Renard et al., Phys. Lett. B 528, 215 (2002)

    Article  ADS  Google Scholar 

  22. M. Dugger et al., Phys. Rev. Lett. 89, 222002 (2002)

    Article  ADS  Google Scholar 

  23. V. Crede et al., Phys. Rev. Lett. 94, 012004 (2005)

    Article  ADS  Google Scholar 

  24. T. Nakabayashi et al., Phys. Rev. C 74, 035202 (2006)

    Article  ADS  Google Scholar 

  25. O. Bartalini et al., Eur. Phys. J. A 33, 169 (2007)

    Article  ADS  Google Scholar 

  26. O. Bartholomy et al., Eur. Phys. J. A 33, 133 (2007)

    Article  ADS  Google Scholar 

  27. D. Elsner et al., Eur. Phys. J. A 33, 147 (2007)

    Article  ADS  Google Scholar 

  28. H. Denizli et al., Phys. Rev. C 76, 015204 (2007)

    Article  ADS  Google Scholar 

  29. V. Crede et al., Phys. Rev. C 80, 055202 (2009)

    Article  ADS  Google Scholar 

  30. M. Williams et al., Phys. Rev. C 80, 045213 (2009)

    Article  ADS  Google Scholar 

  31. M. Sumihama et al., Phys. Rev. C 80, 052201(R) (2009)

    Article  ADS  Google Scholar 

  32. E.F. McNicoll et al., Phys. Rev. C 82, 035208 (2010)

    Article  ADS  Google Scholar 

  33. B. Krusche et al., Phys. Lett. B 397, 171 (1997)

    Article  ADS  Google Scholar 

  34. A. Fantini et al., Phys. Rev. C 78, 015203 (2008)

    Article  ADS  Google Scholar 

  35. W.-T. Chiang et al., Nucl. Phys. A 700, 429 (2002)

    Article  ADS  Google Scholar 

  36. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  37. V.A. Anisovich et al., Eur. Phys. J. A 25, 427 (2005)

    Article  ADS  Google Scholar 

  38. B. Krusche et al., Phys. Lett. B 358, 40 (1995)

    Article  ADS  Google Scholar 

  39. P. Hoffmann-Rothe et al., Phys. Rev. Lett. 78, 4697 (1997)

    Article  ADS  Google Scholar 

  40. V. Hejny et al., Eur. Phys. J. A 6, 83 (1999)

    ADS  Google Scholar 

  41. J. Weiss et al., Eur. Phys. J. A 16, 275 (2003)

    Article  ADS  Google Scholar 

  42. J. Weiss et al., Eur. Phys. J. A 11, 371 (2001)

    Article  ADS  Google Scholar 

  43. M. Pfeiffer et al., Phys. Rev. Lett. 92, 252001 (2004)

    Article  ADS  Google Scholar 

  44. N. Kaiser, P.B. Siegel, W. Weise, Phys. Lett. B 362, 23 (1995)

    Article  ADS  Google Scholar 

  45. N. Kaiser, T. Waas, W. Weise, Nucl. Phys. A 612, 297 (1997)

    Article  ADS  Google Scholar 

  46. M. Polyakov, A. Rathke, Eur. Phys. J. A 18, 691 (2003)

    Article  ADS  Google Scholar 

  47. R.A. Arndt et al., Phys. Rev. C 69, 035208 (2004)

    Article  ADS  Google Scholar 

  48. H.-C. Kim et al., Phys. Rev. D 71, 094023 (2005)

    Article  ADS  Google Scholar 

  49. V. Kuznetsov et al., Phys. Lett. B 647, 23 (2007)

    Article  ADS  Google Scholar 

  50. F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90 (2007)

    Article  ADS  Google Scholar 

  51. V. Shklyar, H. Lenske, U. Mosel, Phys. Lett. B 650, 172 (2007)

    Article  ADS  Google Scholar 

  52. R. Shyam, O. Scholten, Phys. Rev. C 78, 065201 (2008)

    Article  ADS  Google Scholar 

  53. M. Döring, K. Nakayama, Phys. Lett. B 683, 145 (2010)

    Article  ADS  Google Scholar 

  54. A. Fix, L. Tiator, M.V. Polyakov, Eur. Phys. J. A 32, 311 (2007)

    Article  ADS  Google Scholar 

  55. V.A. Anisovich et al., Eur. Phys. J. A 41, 13 (2009)

    Article  ADS  Google Scholar 

  56. V. Kuznetsov et al., Phys. Rev. C 83, 022201(R) (2011)

    Article  ADS  Google Scholar 

  57. D. Husman, W.J. Schwille, Phys. Bl. 44, 40 (1988)

    Google Scholar 

  58. W. Hillert, Eur. Phys. J. A 28, 139 (2006)

    Article  ADS  Google Scholar 

  59. D. Elsner et al., Eur. Phys. J. A 39, 373 (2009)

    Article  ADS  Google Scholar 

  60. E. Aker et al., Nucl. Instrum. Methods A 321, 69 (1992)

    Article  ADS  Google Scholar 

  61. R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)

    Article  ADS  Google Scholar 

  62. A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)

    Article  ADS  Google Scholar 

  63. G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005)

    Article  ADS  Google Scholar 

  64. H. van Pee et al., Eur. Phys. J. A 31, 61 (2007)

    Article  ADS  Google Scholar 

  65. I. Jaegle, PhD thesis, University of Basel (2007) (http://jazz.physik.unibas.ch/site/theses.html)

  66. R. Brun, GEANT, Cern/DD/ee/84-1 (1986)

  67. T. Mertens et al., Eur. Phys. J. A 38, 195 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  68. C. Zeitnitz, The GEANT-CALOR interface user’s guide (2001). (http://www.staff.uni-mainz.de/zeitnitz/Gcalor/gcalor.html)

  69. E. Schäfer, PhD thesis, University of Mainz, unpublished (1993)

  70. M. Lacombe et al., Phys. Lett. B 101, 139 (1981)

    Article  ADS  Google Scholar 

  71. D. Elsner, Int. J. Mod. Phys. E 19, 869 (2010)

    Article  ADS  Google Scholar 

  72. W.T. Chiang et al., Phys. Rev. C 68, 045202 (2003)

    Article  ADS  Google Scholar 

  73. K.H. Althoff et al., Z. Phys. C 1, 327 (1979)

    Article  ADS  Google Scholar 

  74. A.M. Bernstein et al., Phys. Rev. C 55, 1509 (1997)

    Article  ADS  Google Scholar 

  75. A.B. Gridnev, N.G. Kozlenko, Eur. Phys. J. A 4, 187 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to B. Krusche.

Additional information

Communicated by Z.-E. Meziani

Rights and permissions

Reprints and permissions

About this article

Cite this article

The CBELSA/TAPS Collaboration., Jaegle, I., Krusche, B. et al. Quasi-free photoproduction of η-mesons off the deuteron. Eur. Phys. J. A 47, 89 (2011). https://doi.org/10.1140/epja/i2011-11089-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11089-0

Keywords

Navigation