Skip to main content
Log in

Tagging of \( \eta{^\prime}\) decay products to analyze chiral restoration

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In case of chiral U A(1) symmetry restoration the mass of the \( \eta{^\prime}\) boson (the ninth, would-be Goldstone boson) is decreased, thus its production cross-section is heavily enhanced. The \( \eta{^\prime}\) decays (through one of its decay channels) into five low-momentum pions. These pions will not contribute to measured Bose-Einstein correlations, thus the production enhancement changes the strength of two-pion correlation functions at low momentum. Preliminary results on Bose-Einstein correlation functions support the mass decrease of the \( \eta{^\prime}\) boson. In this paper we propose a method to select pions originating from \( \eta{^\prime}\) decays. We investigate the efficiency of the proposed kinematical cut in several collision systems and energies with several simulators. We prove that our method can be used in all investigated collision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  2. A. Adare et al., Phys. Rev. Lett. 104, 132301 (2010)

    Article  ADS  Google Scholar 

  3. T. Kunihiro, Phys. Lett. B 219, 363 (1989)

    Article  ADS  Google Scholar 

  4. Z. Huang, X.-N. Wang, Phys. Rev. D 53, 5034 (1996)

    Article  ADS  Google Scholar 

  5. J.I. Kapusta, D. Kharzeev, L.D. McLerran, Phys. Rev. D 53, 5028 (1996)

    Article  ADS  Google Scholar 

  6. T. Csörgő, R. Vértesi, J. Sziklai, Phys. Rev. Lett. 105, 182301 (2010)

    Article  ADS  Google Scholar 

  7. Z. Fodor, S.D. Katz, Lattice QCD and the Phase Diagram of Quantum Chromodynamics, in Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms Numerical Data and Functional Relationships in Science and Technology, vol. 23, Relativistic Heavy Ion Physics, edited by R. Stock (Springer-Verlag, Berlin, Heidelberg, 2010)

  8. A. Adare et al., Phys. Rev. C 81, 034911 (2010)

    Article  ADS  Google Scholar 

  9. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  10. S.E. Vance, T. Csörgő, D. Kharzeev, Phys. Rev. Lett. 81, 2205 (1998)

    Article  ADS  Google Scholar 

  11. T. Csörgő, Heavy Ion Phys. 15, 1 (2002)

    Article  ADS  Google Scholar 

  12. M. Csanád, Nucl. Phys. A 774, 611 (2006)

    Article  Google Scholar 

  13. R. Vértesi, T. Csörgő, J. Sziklai, Nucl. Phys. A 830, 631C (2009)

    Article  ADS  Google Scholar 

  14. K. Kulka, B. Lorstad, Nucl. Instrum. Methods A 295, 443 (1990)

    Article  ADS  Google Scholar 

  15. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008)

    Article  ADS  Google Scholar 

  16. M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Anselmino

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csanád, M., Kõfaragó, M. Tagging of \( \eta{^\prime}\) decay products to analyze chiral restoration. Eur. Phys. J. A 47, 76 (2011). https://doi.org/10.1140/epja/i2011-11076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11076-5

Keywords

Navigation