Skip to main content
Log in

Analysis of the X(1835) and related baryonium states with Bethe-Salpeter equation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this article, we study the mass spectrum of the baryon-antibaryon bound states p \( \bar{{p}}\) , \( \Sigma\) \( \bar{{\Sigma}}\) , \( \Xi\) \( \bar{{\Xi}}\) , \( \Lambda\) \( \bar{{\Lambda}}\) , p \( \bar{{N}}\)(1440) , \( \Sigma\) \( \bar{{\Sigma}}\)(1660) , \( \Xi\) \( \bar{{\Xi}}^{{\prime}}_{}\) and \( \Lambda\) \( \bar{{\Lambda}}\)(1600) with the Bethe-Salpeter equation. The numerical results indicate that the p \( \bar{{p}}\) , \( \Sigma\) \( \bar{{\Sigma}}\) , \( \Xi\) \( \bar{{\Xi}}\) , p \( \bar{{N}}\)(1440) , \( \Sigma\) \( \bar{{\Sigma}}\)(1660) , \( \Xi\) \( \bar{{\Xi}}^{{\prime}}_{}\) bound states maybe exist, and the new resonances X(1835) and X(2370) can be tentatively identified as the p \( \bar{{p}}\) and p \( \bar{{N}}\)(1440) (or N(1400)\( \bar{{p}}\) bound states, respectively, with some gluon constituents, and the new resonance X(2120) may be a pseudoscalar glueball. On the other hand, the Regge trajectory favors identifying the X(1835) , X(2120) and X(2370) as the excited \( \eta^{{\prime}}_{}\)(958) mesons with the radial quantum numbers n = 3 , 4 and 5, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Z. Bai et al., Phys. Rev. Lett. 91, 022001 (2003).

    Article  ADS  Google Scholar 

  2. M. Ablikim et al., Phys. Rev. Lett. 95, 262001 (2005).

    Article  ADS  Google Scholar 

  3. C. Shen, PoS HQL2010 (2010) 006.

  4. M. Ablikim et al., Phys. Rev. Lett. 106, 072002 (2011).

    Article  ADS  Google Scholar 

  5. J.L. Rosner, AIP Conf. Proc. 815, 218 (2006).

    Article  ADS  Google Scholar 

  6. A. Datta, P.J. O’Donnell, Phys. Lett. B 567, 273 (2003).

    Article  ADS  Google Scholar 

  7. B.S. Zou, H.C. Chiang, Phys. Rev. D 69, 034004 (2004).

    Article  ADS  Google Scholar 

  8. X. Liu, X.Q. Zeng, Y.B. Ding, X.Q. Li, H. Shen, P.N. Shen, hep-ph/0406118.

  9. C.H. Chang, H.R. Pang, Commun. Theor. Phys. 43, 275 (2005).

    Article  ADS  Google Scholar 

  10. A. Sibirtsev, J. Haidenbauer, S. Krewald, U.G. Meissner, A.W. Thomas, Phys. Rev. D 71, 054010 (2005).

    Article  ADS  Google Scholar 

  11. M.L. Yan, S. Li, B. Wu, B.Q. Ma, Phys. Rev. D 72, 034027 (2005).

    Article  ADS  Google Scholar 

  12. G.J. Ding, M.L. Yan, Phys. Rev. C 72, 015208 (2005).

    Article  ADS  Google Scholar 

  13. S.L. Zhu, C.S. Gao, Commun. Theor. Phys. 46, 291 (2006).

    Article  ADS  Google Scholar 

  14. M.L. Yan, High Energy Phys. Nucl. Phys. 30, 1141 (2006).

    Google Scholar 

  15. Z.G. Wang, S.L. Wan, J. Phys. G 34, 505 (2007).

    Article  ADS  Google Scholar 

  16. Y.L. Ma, J. Phys. G 36, 055004 (2009).

    Article  ADS  Google Scholar 

  17. J.P. Dedonder, B. Loiseau, B. El-Bennich, S. Wycech, Phys. Rev. C 80, 045207 (2009).

    Article  ADS  Google Scholar 

  18. G.Y. Chen, H.R. Dong, J.P. Ma, Phys. Rev. D 78, 054022 (2008).

    Article  ADS  Google Scholar 

  19. N. Kochelev, D.P. Min, Phys. Rev. D 72, 097502 (2005).

    Article  ADS  Google Scholar 

  20. N. Kochelev, D.P. Min, Phys. Lett. B 633, 283 (2006).

    Article  ADS  Google Scholar 

  21. B.A. Li, Phys. Rev. D 74, 034019 (2006).

    Article  ADS  Google Scholar 

  22. X.G. He, X.Q. Li, X. Liu, J.P. Ma, Eur. Phys. J. C 49, 731 (2007).

    Article  ADS  Google Scholar 

  23. G. Hao, C.F. Qiao, A.L. Zhang, Phys. Lett. B 642, 53 (2006).

    Article  ADS  Google Scholar 

  24. T. Huang, S.L. Zhu, Phys. Rev. D 73, 014023 (2006).

    Article  ADS  Google Scholar 

  25. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007).

    Article  ADS  Google Scholar 

  26. D.M. Li, B. Ma, Phys. Rev. D 77, 074004 (2008).

    Article  ADS  Google Scholar 

  27. D.V. Bugg, Phys. Lett. B 598, 8 (2004).

    Article  ADS  Google Scholar 

  28. J.F. Liu, G.J. Ding, M.L. Yan, Phys. Rev. D 82, 074026 (2010).

    Article  ADS  Google Scholar 

  29. Z.G. Wang, Chin. Phys. Lett. 27, 101201 (2010).

    Article  ADS  Google Scholar 

  30. N.A. Tornqvist, Z. Phys. C 68, 647 (1995).

    Article  ADS  Google Scholar 

  31. N.A. Tornqvist, M. Roos, Phys. Rev. Lett. 76, 1575 (1996).

    Article  ADS  Google Scholar 

  32. E.E. Salpeter, H.A. Bethe, Phys. Rev. 84, 1232 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. N. Nakanishi, Suppl. Prog. Theor. Phys. 43, 1 (1969).

    Article  ADS  MATH  Google Scholar 

  34. C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994).

    Article  ADS  Google Scholar 

  35. C.D. Roberts, S.M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000).

    Article  ADS  Google Scholar 

  36. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985).

    Article  ADS  Google Scholar 

  37. P.G. Ratcliffe, Phys. Lett. B 365, 383 (1996).

    Article  ADS  Google Scholar 

  38. A.H. Guth, Ann. Phys. (N.Y.) 82, 407 (1974).

    Article  ADS  Google Scholar 

  39. K. Nakamura et al., J. Phys. G 37, 075021 (2010).

    Article  ADS  Google Scholar 

  40. Y.J. Lee et al., Phys. Rev. Lett. 93, 211801 (2004).

    Article  ADS  Google Scholar 

  41. Y.W. Chang et al., Phys. Rev. D 79, 052006 (2009).

    Article  ADS  Google Scholar 

  42. C.H. Wu et al., Phys. Rev. Lett. 97, 162003 (2006).

    Article  ADS  Google Scholar 

  43. C.J. Morningstar, M. Peardon, Phys. Rev. D 60, 034509 (1999).

    Article  ADS  Google Scholar 

  44. Y. Chen et al., Phys. Rev. D 73, 014516 (2006).

    Article  ADS  Google Scholar 

  45. A.P. Szczepaniak, E.S. Swanson, Phys. Lett. B 577, 61 (2003).

    Article  ADS  Google Scholar 

  46. V. Mathieu, F. Buisseret, C. Semay, Phys. Rev. D 77, 114022 (2008).

    Article  ADS  Google Scholar 

  47. A.B. Kaidalov, Y.A. Simonov, Phys. Lett. B 636, 101 (2006).

    Article  ADS  Google Scholar 

  48. D. Dudal, M.S. Guimaraes, S.P. Sorella, Phys. Rev. Lett. 106, 062003 (2011).

    Article  ADS  Google Scholar 

  49. H.Y. Cheng, Int. J. Mod. Phys. A 24, 3392 (2009).

    Article  ADS  MATH  Google Scholar 

  50. G. Ramalho, K. Tsushima, Phys. Rev. D 82, 073007 (2010).

    Article  ADS  Google Scholar 

  51. D.O. Riska, G.E. Brown, Nucl. Phys. A 679, 577 (2001).

    Article  ADS  Google Scholar 

  52. L.L. Frankfurt, L. Mankiewicz, M.I. Strikman, Z. Phys. A 334, 343 (1989).

    ADS  Google Scholar 

  53. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987).

    Article  Google Scholar 

  54. H. Haberzettl, C. Bennhold, T. Mart, T. Feuster, Phys. Rev. C 58, 40 (1998).

    Article  ADS  Google Scholar 

  55. Y. Oh, A.I. Titov, T.S.H. Lee, Phys. Rev. C 63, 025201 (2001).

    Article  ADS  Google Scholar 

  56. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).

    Article  ADS  Google Scholar 

  57. T. Yoshimoto, T. Sato, M. Arima, T.S.H. Lee, Phys. Rev. C 61, 065203 (2000).

    Article  ADS  Google Scholar 

  58. F.K. Guo, C. Hanhart, U.G. Meissner, Phys. Lett. B 665, 26 (2008).

    Article  ADS  Google Scholar 

  59. M.B. Voloshin, Phys. Lett. B 579, 316 (2004).

    Article  ADS  Google Scholar 

  60. D.M. Asner et al., Int. J. Mod. Phys. A 24, 1 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Bo-Qiang Ma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZG. Analysis of the X(1835) and related baryonium states with Bethe-Salpeter equation. Eur. Phys. J. A 47, 71 (2011). https://doi.org/10.1140/epja/i2011-11071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11071-x

Keywords

Navigation