Skip to main content
Log in

Towards a high-precision calculation for the pion-nucleus scattering lengths

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We calculate the leading isospin-conserving few-nucleon contributions to pion scattering off 2H, 3He, and 4He. We demonstrate that the strong contributions to the pion-nucleus scattering lengths can be controlled theoretically to an accuracy of a few percent for isoscalar nuclei and of 10% for isovector nuclei. In particular, we find the π-3He scattering length to be (62 ± 4 ± 7) × 10−3 m −1π where the uncertainties are due to ambiguities in the π-N scattering lengths and few-nucleon effects, respectively. To establish this accuracy we need to identify a suitable power counting for pion-nucleus scattering. For this purpose we study the dependence of the two-nucleon contributions to the scattering length on the binding energy of 2H. Furthermore, we investigate the relative size of the leading two-, three-, and four-nucleon contributions. For the numerical evaluation of the pertinent integrals, a Monte Carlo method suitable for the momentum space is devised. We observe that, so far, no power counting is able to provide a quantitative understanding of the relative strength of N- and (N + 1)]]-nucleon operators. Empirically, we find a relative suppression by a factor of 5 compared to a factor of 50 predicted from dimensional analysis. On the other hand, the relative importance of different contributions within each class of N-nucleon operators can be understood within Weinberg counting. The relevance of our findings for the extraction of the isoscalar π-N scattering length from pionic 2H and 4He is outlined. We also discuss the applicability of heavy pion effective field to the π-2H system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).

    Article  ADS  Google Scholar 

  2. Y. Tomozawa, Nuovo Cimento A 46, 707 (1966).

    Article  ADS  Google Scholar 

  3. V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008) (arXiv:0706.0312 [hep-ph]).

    Article  ADS  Google Scholar 

  4. J. Gasser, V.E. Lyubovitskij, A. Rusetsky, Phys. Rep. 456, 167 (2008) (arXiv:0711.3522 [hep-ph]).

    Article  ADS  Google Scholar 

  5. M. Hoferichter, B. Kubis, U.-G. Meißner, Nucl. Phys. A 833, 18 (2010) (arXiv:0909.4390 [hep-ph]).

    Article  ADS  Google Scholar 

  6. M. Hoferichter, B. Kubis, U.-G. Meißner, Phys. Lett. B 678, 65 (2009) (arXiv:0903.3890 [hep-ph]).

    Article  ADS  Google Scholar 

  7. J. Gasser, M.A. Ivanov, E. Lipartia, M. Mojzis, A. Rusetsky, Eur. Phys. J. C 26, 13 (2002) (arXiv:hep-ph/0206068).

    Article  ADS  Google Scholar 

  8. U. van Kolck, J.A. Niskanen, G.A. Miller, Phys. Lett. B 493, 65 (2000) (arXiv:nucl-th/0006042).

    Article  ADS  Google Scholar 

  9. D.R. Bolton, G.A. Miller, Phys. Rev. C 81, 014001 (2010) (arXiv:0907.0254 [nucl-th]).

    Article  ADS  Google Scholar 

  10. A. Filin, V. Baru, E. Epelbaum, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, U.-G. Meißner, Phys. Lett. B 681, 423 (2009) (arXiv:0907.4671 [nucl-th]).

    Article  ADS  Google Scholar 

  11. A.K. Opper et al., Phys. Rev. Lett. 91, 212302 (2003) (arXiv:nucl-ex/0306027).

    Article  ADS  Google Scholar 

  12. H.C. Schröder et al., Phys. Lett. B 469, 25 (1999).

    Article  ADS  Google Scholar 

  13. H.C. Schröder et al., Eur. Phys. J. C 21, 473 (2001).

    Article  ADS  Google Scholar 

  14. D. Gotta et al., Lect. Notes Phys. 745, 165 (2008).

    Article  ADS  Google Scholar 

  15. V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D. Phillips, Phys. Lett. B 694, 473 (2011) (arXiv:1003.4444 [nucl-th]), http://www.sciencedirect.com/science/article/B6TVN-518TDN4-2/2/052b579bbff53a780e9b2637b3d0d30a

    Article  ADS  Google Scholar 

  16. U.-G. Meißner, U. Raha, A. Rusetsky, Phys. Lett. B 639, 478 (2006) (arXiv:nucl-th/0512035).

    Article  ADS  Google Scholar 

  17. V.V. Baru, A.E. Kudryavtsev, Phys. Atom. Nucl. 60, 1475 (1997).

    ADS  Google Scholar 

  18. T.E.O. Ericson, B. Loiseau, A.W. Thomas, Phys. Rev. C 66, 014005 (2002) (arXiv:hep-ph/0009312).

    Article  ADS  Google Scholar 

  19. M. Döring, E. Oset, M.J. Vicente Vacas, Phys. Rev. C 70, 045203 (2004) (arXiv:nucl-th/0402086).

    Article  ADS  Google Scholar 

  20. S. Weinberg, Phys. Lett. B 295, 114 (1992) (arXiv:hep-ph/9209257).

    Article  ADS  Google Scholar 

  21. S.R. Beane, V. Bernard, T.S.H. Lee, U.-G. Meißner, Phys. Rev. C 57, 424 (1998) (arXiv:nucl-th/9708035).

    Article  ADS  Google Scholar 

  22. S.R. Beane, V. Bernard, E. Epelbaum, U.-G. Meißner, D.R. Phillips, Nucl. Phys. A 720, 399 (2003) (arXiv:hep-ph/0206219).

    Article  ADS  Google Scholar 

  23. V. Lensky et al., Phys. Lett. B 648, 46 (2007) (arXiv:nucl-th/0608042).

    Article  ADS  Google Scholar 

  24. V. Baru et al., Phys. Lett. B 659, 184 (2008) (arXiv:0706.4023 [nucl-th]).

    Article  ADS  Google Scholar 

  25. J. Carlson, R. Schiavilla, Rev. Mod. Phys. 70, 743 (1998).

    Article  ADS  Google Scholar 

  26. S. Weinberg, Phys. Lett. B 251, 288 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Weinberg, Nucl. Phys. B 363, 3 (1991).

    Article  ADS  Google Scholar 

  28. C. Ordóñez, L. Ray, U. van Kolck, Phys. Rev. C 53, 2086 (1996) (arXiv:hep-ph/9511380).

    Article  ADS  Google Scholar 

  29. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003) (arXiv:nucl-th/0304018).

    Article  ADS  Google Scholar 

  30. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747, 362 (2005) (arXiv:nucl-th/0405048).

    Article  ADS  Google Scholar 

  31. U. van Kolck, Phys. Rev. C 49, 2932 (1994).

    Article  ADS  Google Scholar 

  32. V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 77, 064004 (2008) (arXiv:0712.1967 [nucl-th]).

    Article  ADS  Google Scholar 

  33. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006) (arXiv:nucl-th/0509032).

    Article  ADS  Google Scholar 

  34. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009) (arXiv:0811.1338 [nucl-th]).

    Article  ADS  Google Scholar 

  35. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995) (arXiv:nucl-th/9408016).

    Article  ADS  Google Scholar 

  36. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994) (arXiv:nucl-th/9406039).

    Article  ADS  Google Scholar 

  37. R. Machleidt, Phys. Rev. C 63, 024001 (2001) (arXiv:nucl-th/0006014).

    Article  ADS  Google Scholar 

  38. A. Nogga, H. Kamada, W. Glöckle, B.R. Barrett, Phys. Rev. C 65, 054003 (2002) (arXiv:nucl-th/0112026).

    Article  ADS  Google Scholar 

  39. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005) (arXiv:nucl-th/0506005).

    Article  ADS  Google Scholar 

  40. H.W. Hammer, N. Kalantar-Nayestanaki, D.R. Phillips, Working Group Summary: Chiral Dynamics in Few-Nucleon Systems, in Chiral dynamics 2006: Proceedings of the 5th International Conference on Chiral Dynamics, Theory and Experiment, edited by M.W. Ahmed, H. Gao, B. Holstein, H.R. Weller (World Scientific, 2007) pp. 315--329 (arXiv:nucl-th/0611084).

  41. D.R. Entem, E. Ruiz Arriola, M. Pavón Valderrama, R. Machleidt, Phys. Rev. C 77, 044006 (2008) (arXiv:0709.2770 [nucl-th]).

    Article  ADS  Google Scholar 

  42. C.J. Yang, C. Elster, D.R. Phillips, Phys. Rev. C 80, 034002 (2009) (arXiv:0901.2663 [nucl-th]).

    Article  ADS  Google Scholar 

  43. C.J. Yang, C. Elster, D.R. Phillips, Phys. Rev. C 80, 044002 (2009) (arXiv:0905.4943 [nucl-th]).

    Article  ADS  Google Scholar 

  44. E. Epelbaum, J. Gegelia, Eur. Phys. J. A 41, 341 (2009) (arXiv:0906.3822 [nucl-th]).

    Article  ADS  Google Scholar 

  45. V. Baru, C. Hanhart, A.E. Kudryavtsev, U.-G. Meißner, Phys. Lett. B 589, 118 (2004) (arXiv:nucl-th/0402027).

    Article  ADS  Google Scholar 

  46. V. Lensky et al., Eur. Phys. J. A 26, 107 (2005) (arXiv:nucl-th/0505039).

    Article  ADS  Google Scholar 

  47. C. Hanhart, Phys. Rep. 397, 155 (2004) (arXiv:hep-ph/0311341).

    Article  ADS  Google Scholar 

  48. D. Gotta et al., Phys. Rev. C 51, 469 (1995).

    Article  ADS  Google Scholar 

  49. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  50. R.B. Wiringa, R. Schiavilla, S.C. Pieper, J. Carlson, Phys. Rev. C 78, 021001 (2008) (arXiv:0806.1718 [nucl-th]).

    Article  ADS  Google Scholar 

  51. S. Liebig, $\pi$-${}^3\mathrm{He}$ Scattering in Chiral Perturbation Theory (Diploma’s thesis, Bonn University, 2009).

  52. A. Nogga, C. Hanhart, Phys. Lett. B 634, 210 (2006) (arXiv:nucl-th/0511011).

    Article  ADS  Google Scholar 

  53. L. Platter, D.R. Phillips, Phys. Lett. B 641, 164 (2006) (arXiv:nucl-th/0605024).

    Article  ADS  Google Scholar 

  54. M. Pavón Valderrama, E.R. Arriola, (2006) (arXiv:nucl-th/0605078).

  55. B. Borasoy, H.W. Grießhammer, Int. J. Mod. Phys. E 12, 65 (2003) (arXiv:nucl-th/0105048).

    Article  ADS  Google Scholar 

  56. S.R. Beane, M.J. Savage, Nucl. Phys. A 717, 104 (2003) (arXiv:nucl-th/0204046).

    Article  ADS  Google Scholar 

  57. U.-G. Meißner, U. Raha, A. Rusetsky, Eur. Phys. J. C 41, 213 (2005) (arXiv:nucl-th/0501073).

    Article  ADS  Google Scholar 

  58. M. Pavón Valderrama, E. Ruiz Arriola, Phys. Rev. C 72, 054002 (2005) (arXiv:nucl-th/0504067).

    Article  Google Scholar 

  59. L. Hulthén, M. Sugawara, in Handbuch der Physik, edited by S. Flügge (Springer Verlag, 1957).

  60. M. Pavón Valderrama, A. Nogga, E. Ruiz Arriola, D.R. Phillips, Eur. Phys. J. A 36, 315 (2008) (arXiv:0711.4785 [nucl-th]).

    Article  ADS  Google Scholar 

  61. D.R. Phillips, G. Rupak, M.J. Savage, Phys. Lett. B 473, 209 (2000) (arXiv:nucl-th/9908054).

    Article  ADS  Google Scholar 

  62. V. Dmitrasinovic, K. Kubodera, F. Myhrer, T. Sato, Phys. Lett. B 465, 43 (1999) (arXiv:nucl-th/9902048).

    Article  ADS  Google Scholar 

  63. J.L. Friar, U. van Kolck, G.L. Payne, S.A. Coon, Phys. Rev. C 68, 024003 (2003) (arXiv:nucl-th/0303058).

    Article  ADS  Google Scholar 

  64. T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643 (1999) (arXiv:hep-ph/9901384).

    ADS  Google Scholar 

  65. V. Bernard, N. Kaiser, J. Gasser, U.-G. Meißner, Phys. Lett. B 268, 291 (1991).

    Article  ADS  Google Scholar 

  66. C. Hanhart, U. van Kolck, G.A. Miller, Phys. Rev. Lett. 85, 2905 (2000) (arXiv:nucl-th/0004033).

    Article  ADS  Google Scholar 

  67. C. Hanhart, N. Kaiser, Phys. Rev. C 66, 054005 (2002) (arXiv:nucl-th/0208050).

    Article  ADS  Google Scholar 

  68. A. Gardestig, D.R. Phillips, C. Elster, Phys. Rev. C 73, 024002 (2006) (arXiv:nucl-th/0511042).

    Article  ADS  Google Scholar 

  69. V. Lensky et al., Eur. Phys. J. A 27, 37 (2006) (arXiv:nucl-th/0511054).

    Article  ADS  Google Scholar 

  70. Y. Kim, T. Sato, F. Myhrer, K. Kubodera, (2008) (arXiv:0810.2774 [nucl-th]).

  71. S.S. Kamalov, E. Oset, A. Ramos, Nucl. Phys. A 690, 494 (2001) (arXiv:nucl-th/0010054).

    Article  ADS  Google Scholar 

  72. U.-G. Meißner, U. Raha, A. Rusetsky, Eur. Phys. J. C 47, 473 (2006) (arXiv:nucl-th/0603029).

    Article  ADS  Google Scholar 

  73. V. Baru, E. Epelbaum, A. Rusetsky, Eur. Phys. J. A 42, 111 (2009) (arXiv:0905.4249 [nucl-th]).

    Article  ADS  Google Scholar 

  74. H. Krebs, E. Epelbaum, U.-G. Meißner, Eur. Phys. J. A 32, 127 (2007) (arXiv:nucl-th/0703087).

    Article  ADS  Google Scholar 

  75. M.L. Goldberger, S.B. Treiman, Phys. Rev. 110, 1178 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  76. A. Nogga, Application of chiral nuclear forces to light nuclei (World Scientific, Singapore, 2007) pp. 182--193, Proceedings of the ``5th International Workshop on Chiral Dynamics’’, Durham/Chapel Hill, USA, Sept 18-22, 2006 (arXiv:nucl-th/0611081).

  77. E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, H. Witała, Phys. Rev. C 66, 064001 (2002) (arXiv:nucl-th/0208023).

    Article  ADS  Google Scholar 

  78. A. Nogga, D. Hüber, H. Kamada, W. Glöckle, Phys. Lett. B 409, 19 (1997) (arXiv:nucl-th/9704001).

    Article  ADS  Google Scholar 

  79. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997) (arXiv:nucl-th/9705009).

    Article  ADS  Google Scholar 

  80. J. Carlson, V.R. Pandharipande, R.B. Wiringa, Nucl. Phys. A 401, 59 (1983).

    Article  ADS  Google Scholar 

  81. S.A. Coon, H.K. Han, Few Body Syst. 30, 131 (2001) (arXiv:nucl-th/0101003).

    Article  ADS  Google Scholar 

  82. V. Baru, J. Haidenbauer, C. Hanhart, J.A. Niskanen, Eur. Phys. J. A 16, 437 (2003) (arXiv:nucl-th/0207040).

    Article  ADS  Google Scholar 

  83. V. Baru, (2007) (arXiv:0711.2743 [nucl-th]).

  84. M. Hoferichter, B. Kubis, U.-G. Meißner, (2009) (arXiv:0910.0736 [hep-ph]).

  85. R. Abela et al., Phys. Lett. B 68, 429 (1977).

    Article  ADS  Google Scholar 

  86. G.R. Mason et al., Nucl. Phys. A 340, 240 (1980).

    Article  ADS  Google Scholar 

  87. I. Schwanner et al., Nucl. Phys. A 412, 253 (1984).

    Article  ADS  Google Scholar 

  88. S. Deser, M.L. Goldberger, K. Baumann, W.E. Thirring, Phys. Rev. 96, 774 (1954).

    Article  ADS  Google Scholar 

  89. V.E. Lyubovitskij, A. Rusetsky, Phys. Lett. B 494, 9 (2000) (arXiv:hep-ph/0009206).

    Article  ADS  Google Scholar 

  90. D. Gotta, Measurement of the 1s shift of pionic atoms, PSI experiments R-98-01 and R-06-03 (2010).

  91. B. Kubis, private communication

  92. C. Hanhart, A. Wirzba, Phys. Lett. B 650, 354 (2007) (arXiv:nucl-th/0703012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nogga.

Additional information

Communicated by J. Bijnens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebig, S., Baru, V., Ballout, F. et al. Towards a high-precision calculation for the pion-nucleus scattering lengths. Eur. Phys. J. A 47, 69 (2011). https://doi.org/10.1140/epja/i2011-11069-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11069-4

Keywords

Navigation