Skip to main content
Log in

Sub- and above-barrier fusion of loosely bound 6Li with 28Si

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Fusion excitation functions are measured for the system 6Li + 28Si using the characteristic \( \gamma\) -ray method, encompassing both the sub-barrier and above-barrier regions, viz, E lab = 7-24 MeV. Two separate experiments were performed, one for the above-barrier region ( E lab = 11-24 MeV) and another for the below-barrier region ( E lab = 7-10 MeV). The results were compared with our previously measured fusion cross-section for the 7Li + 28Si system. We observed the enhancement of the fusion cross-section at sub-barrier regions for both 6Li and 7Li , but the yield was substantially larger for 6Li . However, for well-above-barrier regions, a similar type of suppression was identified for both the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Hussein et al., Phys. Rev. C 47, 2398 (1993)

    Article  ADS  Google Scholar 

  2. C.H. Dasso et al., Nucl. Phys. A 597, 473 (1996)

    Article  ADS  Google Scholar 

  3. K. Hagino et al., Phys. Rev. C 61, 037602 (2000)

    Article  ADS  Google Scholar 

  4. A. Diaz-Torres et al., Phys. Rev. Lett. 98, 152701 (2007)

    Article  ADS  Google Scholar 

  5. A. Yoshida et al., Phys. Lett. B 389, 457 (1996)

    Article  ADS  Google Scholar 

  6. J. Takahashi et al., Phys. Rev. Lett. 78, 30 (1997)

    Article  ADS  Google Scholar 

  7. M. Dasgupta et al., Phys. Rev. C 70, 024606 (2004)

    Article  ADS  Google Scholar 

  8. C. Signorini et al., Eur. Phys. J. A 5, 7 (1999)

    Article  ADS  Google Scholar 

  9. M. Trotta et al., Phys. Rev. Lett. 84, 2342 (2000)

    Article  ADS  Google Scholar 

  10. C. Beck et al., Phys. Rev. C 67, 054602 (2003)

    Article  ADS  Google Scholar 

  11. C. Beck et al., Nucl. Phys. A 834, 440c (2010)

    Article  ADS  Google Scholar 

  12. Y.W. Wu et al., Phys. Rev. C 68, 044605 (2003)

    Article  ADS  Google Scholar 

  13. A. Navin et al., Phys. Rev. C 70, 044601 (2004)

    Article  ADS  Google Scholar 

  14. R. Raabe et al., Nature (London) 431, 823 (2004)

    Article  ADS  Google Scholar 

  15. N. Takigawa, M. Kuratani, H. Sagawa, Phys. Rev. C 47, R2470 (1993)

    Article  ADS  Google Scholar 

  16. V.I. Zagrebaev, Phys. Rev. C 67, 061601(R) (2003)

    Article  ADS  Google Scholar 

  17. K.E. Rehm et al., Phys. Rev. Lett. 81, 3341 (1998)

    Article  ADS  Google Scholar 

  18. A. Mukherjee et al., Nucl. Phys. A 596, 299 (1996)

    Article  ADS  Google Scholar 

  19. Mandira Sinha et al., Phys. Rev. C 76, 027603 (2007)

    Article  ADS  Google Scholar 

  20. Mandira Sinha et al., Phys. Rev. C 78, 027601 (2008)

    Article  ADS  Google Scholar 

  21. S.B. Moraes et al., Phys. Rev. C 61, 064608 (2000)

    Article  ADS  Google Scholar 

  22. P.R.S. Gomes et al., Phys. Lett. B 601, 20 (2004)

    Article  ADS  Google Scholar 

  23. A. Diaz-Torres, I.J. Thompson, C. Beck, Phys. Rev. C 68, 044607 (2003)

    Article  ADS  Google Scholar 

  24. I. Padron et al., Phys. Rev. C 66, 044608 (2002)

    Article  ADS  Google Scholar 

  25. M. Ray et al., Phys. Rev. C 78, 064617 (2008)

    Article  ADS  Google Scholar 

  26. A. Pakou et al., Eur. Phys. J. A 39, 187 (2009)

    Article  ADS  Google Scholar 

  27. M. Hugi et al., Nucl. Phys. A 368, 173 (1981)

    Article  ADS  Google Scholar 

  28. S. Kailas et al., Pramana J. Phys. 35, 439 (1990)

    Article  ADS  Google Scholar 

  29. G.V. Marti et al., Phys. Rev. C 71, 027602 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Kalita et al., Phys. Rev. C 73, 024609 (2006)

    Article  ADS  Google Scholar 

  31. E. Pülhofer, Nucl. Phys. A 280, 267 (1977)

    Article  ADS  Google Scholar 

  32. C.J.S. Scholz, L. Ricken, E. Kuhlmann, Z. Phys. A 325, 203 (1986)

    ADS  Google Scholar 

  33. K. Hagino et al., Comput. Phys. Commun. 123, 143 (1999)

    Article  MATH  ADS  Google Scholar 

  34. D.G. Kovar et al., Phys. Rev. C 20, 1305 (1979)

    Article  ADS  Google Scholar 

  35. A. Pakou et al., Phys. Rev. C 76, 054601 (2007)

    Article  ADS  Google Scholar 

  36. F.A. Souza et al., Nucl. Phys. A 821, 36 (2009)

    Article  ADS  Google Scholar 

  37. A. Shrivastava et al., Phys. Lett. B 633, 463 (2006)

    Article  ADS  Google Scholar 

  38. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  39. L.C. Vaz, J.M. Alexander, G.R. Satchler, Phys. Rep. 69, 373 (1981)

    Article  ADS  Google Scholar 

  40. M.C.S. Figueira et al., Nucl. Phys. A 561, 453 (1993)

    Article  ADS  Google Scholar 

  41. P.R.S. Gomes et al., Phys. Rev. C 71, 017601 (2005)

    Article  ADS  Google Scholar 

  42. C. Beck et al., Phys. Rev. C 75, 054605 (2007)

    Article  ADS  Google Scholar 

  43. M. Dasgupta et al., Phys. Rev. Lett. 82, 1395 (1999)

    Article  ADS  Google Scholar 

  44. C. Beck, Nucl. Phys. A 787, 251c (2007)

    Article  ADS  Google Scholar 

  45. F.A. Souza et al., Nucl. Phys. A 834, 420c (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Majumdar.

Additional information

Communicated by C. Signorini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, M., Majumdar, H., Basu, P. et al. Sub- and above-barrier fusion of loosely bound 6Li with 28Si. Eur. Phys. J. A 44, 403–410 (2010). https://doi.org/10.1140/epja/i2010-10976-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2010-10976-0

Keywords

Navigation