Skip to main content
Log in

Precise set of tensor analyzing power T20 data for the deuteron-proton breakup at 130 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

High-precision tensor analyzing power T20 data of the 1H (d,pp)n reaction at 130MeV beam energy have been determined for 81 kinematical configurations. They are compared to theoretical predictions based on various approaches to describe the dynamics of the three-nucleon (3N) system. The calculations are performed using modern realistic nucleon-nucleon potentials combined with three-nucleon force (3NF) models or with an effective 3NF resulting from the explicit treatment of the \( \Delta\) -isobar in coupled-channels (CC) calculations. Alternatively, the framework of chiral perturbation theory is used to generate consistent two-nucleon and three-nucleon potentials at the currently numerically attainable order. Results of the CC calculations with the \( \Delta\) degrees of freedom and including long-range Coulomb force are also shown. In general all predictions are consistent with each other and describe the experimental T20 results quite well. In a few configurations small inconsistencies between the data and the results of all approaches are observed. Predicted effects of the 3NF are not big and in most cases do not lead to an improved description of the data. The Coulomb force effects are also small in size and often opposite to the effects of TM99 3NF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nogga et al., Phys. Rev. C 67, 034004 (2003).

    Article  ADS  Google Scholar 

  2. W. Glöckle et al., Phys. Rep. 274, 107 (1996) and references therein.

    Article  ADS  Google Scholar 

  3. H. Witala, W. Glöckle, D. Huber, J. Golak, H. Kamada, Phys. Rev. Lett. 81, 1183 (1998).

    Google Scholar 

  4. H. Sakai et al., Phys. Rev. Lett. 84, 5288 (2000).

    Article  ADS  Google Scholar 

  5. K. Hatanaka et al., Phys. Rev. C 66, 044002 (2002).

    Article  ADS  Google Scholar 

  6. P. Mermod et al., Phys. Lett. B 597, 243 (2004).

    Article  ADS  Google Scholar 

  7. K. Sekiguchi et al., Phys. Rev. C 70, 014001 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  8. K. Ermisch et al., Phys. Rev. Lett. 86, 5862 (2001); K. Ermisch et al., Phys. Rev. C 68, 051001 (2003); K. Ermisch et al., Phys. Rev. C 71, 064004 (2005).

    Article  ADS  Google Scholar 

  9. B. von Przewoski et al., Phys. Rev. C 74, 064003 (2006).

    Article  ADS  Google Scholar 

  10. H.R. Amir-Ahmadi et al., Phys. Rev. C 75, 041001(R) (2007).

    Article  ADS  Google Scholar 

  11. H. Mardanpour et al., Eur. Phys. J. 31, 383 (2007).

    Article  ADS  Google Scholar 

  12. A. Deltuva, K. Chmielewski, P.U. Sauer, Phys. Rev. C 67, 034001 (2003); A. Deltuva, R. Machleidt, P.U. Sauer, Phys. Rev. C 68, 024005 (2003).

    Article  ADS  Google Scholar 

  13. A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 72, 054004 (2005); A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 73, 057001 (2006).

    Article  ADS  Google Scholar 

  14. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).

    Article  ADS  Google Scholar 

  15. H. Witala, J. Golak, R. Skibinski, Phys. Lett. B 634, 374 (2006); R. Skibinski, H. Witala, J. Golak, Eur. Phys. J. A 30, 369 (2006).

    Article  ADS  Google Scholar 

  16. St. Kistryn et al., Nucl. Phys. A 548, 49 (1992); J. Balewski et al., Nucl. Phys. A 581, 131 (1995).

    Article  ADS  Google Scholar 

  17. M. Allet et al., Phys. Rev. C 50, 602 (1994); M. Allet et al., Phys. Lett. B 376, 255 (1996).

    Article  ADS  Google Scholar 

  18. J. Zejma et al., Phys. Rev. C 55, 42 (1997).

    Article  ADS  Google Scholar 

  19. K. Bodek et al., Few-Body Syst. 30, 65 (2001).

    Article  ADS  Google Scholar 

  20. St. Kistryn et al., Phys. Rev. C 68, 054004 (2003); St. Kistryn et al., Phys. Rev. C 72, 044006 (2005).

    Article  ADS  Google Scholar 

  21. St. Kistryn et al., Phys. Lett. B 641, 23 (2006).

    Article  ADS  Google Scholar 

  22. G.G. Ohlsen, R.E. Brown, F.D. Correll, R.A. Hardekopf, Nucl. Instrum. Methods 179, 283 (1981).

    Article  ADS  Google Scholar 

  23. H.R. Kremers, A.G. Drentje, in Polarized Gas Targets and Polarized Beams, AIP Conf. Proc. 421, 502 (1997).

    Google Scholar 

  24. N. Kalantar-Nayestanaki, J. Mulder, J. Zijlstra, Nucl. Instrum. Methods A 417, 215 (1998).

    Article  Google Scholar 

  25. N. Kalantar-Nayestanaki et al., Nucl. Instrum. Methods A 444, 591 (2000).

    Article  ADS  Google Scholar 

  26. St. Kistryn, C.P. Bee, P. Eberhardt, Proceedings of the 6th International Conference on Electronics for Particle Physics, LeCroy Corporation, Chestnut Ridge New York, May 28–29, 1997, edited by G.J. Blanar, R.L. Sumner (LeCroy Research Systems, New York, 1997).

    Google Scholar 

  27. H.G. Essel, N. Kurz, IEEE Trans. Nucl. Sci. 47, 337 (2000).

    Article  ADS  Google Scholar 

  28. E. Stephan et al., Phys. Rev. C 76, 57001 (2007).

    Article  ADS  Google Scholar 

  29. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996); R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Article  ADS  Google Scholar 

  30. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  31. V.G.J. Stoks et al., Phys. Rev. C 49, 2950 (1994).

    Article  ADS  Google Scholar 

  32. J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. A. Nogga, D. Hüber, H. Kamada, W. Glöckle, Phys. Lett. B 409, 19 (1997).

    Article  ADS  Google Scholar 

  34. J.L. Friar, D. Hüber, U. van Kolck, Phys. Rev. C 59, 53 (1999).

    Article  ADS  Google Scholar 

  35. S.A. Coon, H.K. Han, Few-Body Syst. 30, 131 (2001).

    Article  ADS  Google Scholar 

  36. D. Hüber, H. Kamada, H. Witala, W. Glöckle, Acta Phys. Pol. B 28, 1677 (1997).

    Google Scholar 

  37. R. Skibinski, J. Golak, H. Witala, W. Glöckle, Eur. Phys. J. A 40, 215 (2009); H. Witala, R. Skibinski, J. Golak, W. Glöckle, arXiv:nucl-th/0903.1522.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Stephan.

Additional information

Communicated by Hayan Gao

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephan, E., Kistryn, S., Biegun, A. et al. Precise set of tensor analyzing power T20 data for the deuteron-proton breakup at 130 MeV. Eur. Phys. J. A 42, 13 (2009). https://doi.org/10.1140/epja/i2009-10865-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2009-10865-7

PACS

Navigation