Skip to main content
Log in

Structure of rotational bands in 253No

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In-beam gamma-ray and conversion electron spectroscopic studies have been performed on the 253 No nucleus. A strongly coupled rotational band has been identified and the improved statistics allows an assignment of the band structure as built on the \(\ensuremath 9/2^-[734]_{\nu}\) ground state. The results agree with previously known transition energies but disagree with the tentative structural assignments made in earlier work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.-D. Herzberg, P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008).

    Article  ADS  Google Scholar 

  2. R.-D. Herzberg, J. Phys. G 30, 123R (2004).

    Article  ADS  Google Scholar 

  3. P. Reiter et al., Phys. Rev. Lett. 95, 032501 (2005).

    Article  ADS  Google Scholar 

  4. A. Chatillon et al., Phys. Rev. Lett. 98, 132503 (2007).

    Article  ADS  Google Scholar 

  5. S. Ketelhut et al., Phys. Rev. Lett. 102, 212501 (2009).

    Article  ADS  Google Scholar 

  6. R.-D. Herzberg et al., Eur. Phys. J. A 15, 205 (2002).

    Article  ADS  Google Scholar 

  7. M. Leino et al., Nucl. Instrum. Methods B 99, 653 (1995).

    Article  ADS  Google Scholar 

  8. S. Eeckhaudt, PhD Thesis, University of Jyväskylä, 2006.

  9. S. Moon, PhD Thesis, University of Liverpool, 2007.

  10. R.D. Page et al., Nucl. Instrum. Methods B 204, 634 (2003).

    Article  ADS  Google Scholar 

  11. K. Ashok et al., Nucl. Data Sheets 107, 2103 (2006).

    Article  Google Scholar 

  12. P.A. Butler et al., Nucl. Instrum. Methods A 381, 433 (1996).

    Article  ADS  Google Scholar 

  13. H. Kankaanpää et al., Nucl. Instrum. Methods A 534, 503 (2004).

    Article  ADS  Google Scholar 

  14. P.A. Butler et al., Phys. Rev. Lett. 89, 202501 (2002).

    Article  ADS  Google Scholar 

  15. R.D. Humphreys et al., Phys. Rev. 69, 064324 (2004).

    Article  Google Scholar 

  16. A.V. Afanasjev et al., Phys. Rev. C 67, 024309 (2003).

    Article  ADS  Google Scholar 

  17. M. Bender et al., Nucl. Phys. A 723, 354 (2003).

    Article  ADS  Google Scholar 

  18. A. Lopez-Martens et al., Eur. Phys. J. A 32, 245 (2007).

    Article  ADS  Google Scholar 

  19. F.P. Hessberger, Eur. Phys. J. D 45, 33 (2007).

    Article  ADS  Google Scholar 

  20. A. Lopez-Martens et al., Phys. Rev. C 74, 044303 (2006).

    Article  ADS  Google Scholar 

  21. F.P. Hessberger, Eur. Phys. J. A 22, 417 (2004).

    Article  ADS  Google Scholar 

  22. J.E. Bastin et al., Phys. Rev. C 73, 024308 (2006).

    Article  ADS  Google Scholar 

  23. I.H. Lazarus et al., IEEE Trans. Nucl. Sci. 48, 567 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. -D. Herzberg.

Additional information

Communicated by C. Signorini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzberg, R.D., Moon, S., Eeckhaudt, S. et al. Structure of rotational bands in 253No. Eur. Phys. J. A 42, 333–337 (2009). https://doi.org/10.1140/epja/i2009-10855-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2009-10855-9

Keywords

Navigation