Skip to main content
Log in

Charge radii in modern macroscopic-microscopic mass models: The role of dynamic quadrupole deformation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We calculate the charge radii of nuclei in the frame of the finite-range droplet model including axial and reflection asymmetry. In addition, in order to empirically include dynamic contributions into the radius calculations, we use the quadrupole deformation \( \beta_{{2}}^{}\) deduced from the experimental B(E2;01 + \( \rightarrow\) 21 +) value as an input parameter. It is found that the calculated charge radii are in poor agreement with measured charge radii in the mass regions A < 110 and A > 210 . A slight systematic deviation is observed for the difference between model predictions and experiment for 110 < A < 210 . However calculated changes of charge radii along isotope chains are in better agreement with the experimental data when \( \beta_{{2}}^{}\) ’s from B(E2;01 + \( \rightarrow\) 21 +) values are used instead of the model \( \beta_{{2}}^{}\) ’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Möller, J.R. Nix, Nucl. Phys. A 361, 117 (1981).

    Article  ADS  Google Scholar 

  2. P. Möller, J.R. Nix, At. Data Nucl. Data Tables 26, 165 (1981).

    Article  ADS  Google Scholar 

  3. P. Möller, J.R. Nix, At. Data Nucl. Data Tables 39, 213 (1988).

    Article  ADS  Google Scholar 

  4. P. Möller, W.D. Myers, W.J. Swiatecki, J. Treiner, At. Data Nucl. Data Tables 39, 225 (1988).

    Article  ADS  Google Scholar 

  5. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  6. P. Möller, R. Bengtsson, B.G. Carlsson, P. Olivius, T. Ichikawa, Phys. Rev. Lett. 97, 162502 (2006).

    Article  ADS  Google Scholar 

  7. P. Möller, R. Bengtsson, B.G. Carlsson, P. Olivius, T. Ichikawa, H. Sagawa, A. Iwamoto, At. Data Nucl. Data Tables 94, 758 (2008).

    Article  ADS  Google Scholar 

  8. F. Buchinger, J.E. Crawford, A.K. Dutta, J.M. Pearson, F. Tondeur, Phys. Rev. C 49, 1402 (1994).

    Article  ADS  Google Scholar 

  9. F. Buchinger, J.M. Pearson, S. Goriely, Phys. Rev. C 64, 067303 (2001).

    Article  ADS  Google Scholar 

  10. F. Buchinger, J.M. Pearson, Phys. Rev. C 72, 057305 (2005).

    Article  ADS  Google Scholar 

  11. H. Iimura, F. Buchinger, Phys. Rev. C 76, 057302 (2007).

    Article  ADS  Google Scholar 

  12. H. Iimura, F. Buchinger, Phys. Rev. C 78, 067301 (2008).

    Article  Google Scholar 

  13. M. Keim, E. Arnold, W. Borchers, U. Georg, A. Klein, R. Neugart, L. Vermeeren, R.E. Silverans, P. Lievens, Nucl. Phys. A 586, 219 (1995).

    Article  ADS  Google Scholar 

  14. S.A. Ahmad, W. Klempt, R. Neugart, E.W. Otten, P.-G. Reinhard, G. Ulm, K. Wendt, ISOLDE Collaboration, Nucl. Phys. A 483, 244 (1988).

    Article  ADS  Google Scholar 

  15. F. Buchinger, E.B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R.E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Fleming, D.W.L. Sprung, G. Ulm, Phys. Rev. C 41, 2883 (1990).

    Article  ADS  Google Scholar 

  16. W.D. Myers, K.-H. Schmidt, Nucl. Phys. A 410, 61 (1983).

    Article  ADS  Google Scholar 

  17. S. Raman, J.A. Sheikh, K.H. Bhatt, Phys. Rev. C 52, 1380 (1995).

    Article  ADS  Google Scholar 

  18. P. Möller, private communication.

  19. R. Bengtsson, J. Dudek, W. Nazarewicz, P. Olanders, Phys. Scr. 39, 196 (1989).

    Article  ADS  Google Scholar 

  20. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Raman, C.W. Nestor jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  22. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  23. S. Goriely, J.M. Pearson, Phys. Rev. C 77, 031301(R) (2008).

    Article  ADS  Google Scholar 

  24. G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Iimura.

Additional information

Communicated by W. Nazarewicz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iimura, H., Buchinger, F. Charge radii in modern macroscopic-microscopic mass models: The role of dynamic quadrupole deformation. Eur. Phys. J. A 42, 559–563 (2009). https://doi.org/10.1140/epja/i2009-10789-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2009-10789-2

Keywords

Navigation