Skip to main content
Log in

Screened potential and quarkonia properties at high temperatures

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We perform a quark model calculation of the quarkonia b \( \overline{{b}}\) and c \( \overline{{c}}\) spectra using smooth and sudden string breaking potentials. The screening parameter is scale dependent and can be related to an effective running gluon mass that has a finite infrared fixed point. A temperature dependence for the screening mass is motivated by lattice QCD simulations at finite temperature. Qualitatively different results are obtained for quarkonia properties close to a critical value of the deconfining temperature when a smooth or a sudden string breaking potential is used. In particular, with a sudden string breaking potential quarkonia radii remain almost independent of the temperature up to the critical point, only well above the critical point the radii increase significantly. Such a behavior will impact the phenomenology of quarkonia interactions in medium, in particular for scattering dissociation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986).

    Google Scholar 

  2. A. Mócsy, P. Petreczky, Phys. Rev. D 77, 014501 (2008).

    Google Scholar 

  3. G.S. Bali, Phys. Rep. 343, 1 (2001).

  4. SESAM Collaboration (G.S. Bali, H. Neff, T. Duessel, T. Lippert, K. Schilling), Phys. Rev. D 71, 114513 (2005).

    Google Scholar 

  5. P. González, A. Valcarce, H. Garcilazo, J. Vijande, Phys. Rev. D 68, 034007 (2003).

    Google Scholar 

  6. J. Vijande, P. González, H. Garcilazo, A. Valcarce, Phys. Rev. D 69, 074019 (2004).

    Google Scholar 

  7. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 21, 203 (1980).

    Google Scholar 

  8. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000).

  9. M.M. Brisudová, L. Burakovsky, T. Goldman, Phys. Rev. D 61, 054013 (2000).

    Google Scholar 

  10. P.W. Stephenson, Nucl. Phys. B 550, 427 (1999).

    Google Scholar 

  11. E.S. Swanson, J. Phys. G 31, 845 (2006).

    Google Scholar 

  12. T. Umeda, K. Nomura, H. Matsufuru, Eur. Phys. J. C 39, S1, 9 (2005).

    Google Scholar 

  13. M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004).

    Google Scholar 

  14. S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D 69, 094507 (2004).

    Google Scholar 

  15. E.V. Shuryak, I. Zahed, Phys. Rev. C 70, 021901 (2004).

    Google Scholar 

  16. E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 054507 (2004).

    Google Scholar 

  17. C.Y. Wong, Phys. Rev. C 72, 034906 (2005).

    Google Scholar 

  18. W.M. Alberico, A. Beraudo, A. de Pace, A. Molinari, Phys. Rev. D 72, 114011 (2005).

    Google Scholar 

  19. M. Mannarelli, R. Rapp, Nucl. Phys. A 774, 761 (2006).

    Google Scholar 

  20. A. Mócsy, P. Petreczky, Phys. Rev. D 73, 074007 (2006).

    Google Scholar 

  21. H. Satz, J. Phys. G 32, R25 (2006).

  22. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005).

    Google Scholar 

  23. M. Laine, O. Philipsen, M. Tassler, JHEP 0709, 066 (2007)

  24. N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008).

    Google Scholar 

  25. D. Hadjimichef, G. Krein, S. Szpigel, J.S. da Veiga, Ann. Phys. 268, 105 (1998).

    Google Scholar 

  26. C.Y. Wong, E.S. Swanson, T. Barnes, Phys. Rev. C 62, 045201 (2000).

    Google Scholar 

  27. J.P. Hilbert, N. Black, T. Barnes, E.S. Swanson, Phys. Rev. C 75, 064907 (2007).

    Google Scholar 

  28. J. Haidenbauer, G. Krein, U.G. Meissner, A. Sibirtsev, Eur. Phys. J. A 33, 107 (2007).

    Google Scholar 

  29. R. Röhrich, Technical Status Report on the Compressed Baryonic Matter Experiment, http://www.gsi. de/documents/QCD_CBM-report-2005-001.html.

  30. P. González, J. Vijande, A. Valcarce, H. Garcilazo, Eur. Phys. J. A 29, 235 (2006).

    Google Scholar 

  31. S.E. Koonin, D.C. Meredith, Computational Physics (Addison-Wesley, New York, 1990).

  32. W.-M. Yao, J. Phys. G 33, 1 (2006) and 2007 partial update for 2008.

  33. D. Hadjimichef, J. Haidenbauer, G. Krein, Phys. Rev. C 63, 035204 (2001)

    Google Scholar 

  34. T. Barnes, E.S. Swanson, Phys. Rev. D 46, 131 (1992).

    Google Scholar 

  35. E.S. Swanson, Ann. Phys. (N.Y.) 220, 73 (1992).

    Google Scholar 

  36. A. Valcarce, H. Garcilazo, F. Fernández, P. González, Rep. Prog. Phys. 68, 965 (2005).

    Google Scholar 

  37. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982).

    Google Scholar 

  38. K.D. Born, E. Laermann, N. Pirch, T.F. Walsh, P.M. Zerwas, Phys. Rev. D 40, 1653 (1989).

    Google Scholar 

  39. G.S. Bali, Phys. Rev. D 62, 054503 (2000)

    Google Scholar 

  40. F. Karsch, M.-T. Mehr, H. Satz, Z. Phys. C 37, 617 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Valcarce.

Additional information

V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijande, J., Krein, G. & Valcarce, A. Screened potential and quarkonia properties at high temperatures. Eur. Phys. J. A 40, 89–97 (2009). https://doi.org/10.1140/epja/i2008-10736-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10736-9

PACS

Navigation