Skip to main content
Log in

A new form of three-body Faddeev equations in the continuum

  • Regular Article — Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We propose a novel approach to solve the three-nucleon (3N) Faddeev equation which avoids the complicated singularity pattern going with the moving logarithmic singularities of the standard approach. In this new approach the treatment of the 3N Faddeev equation becomes essentially as simple as the treatment of the two-body Lippmann-Schwinger equation. Very good agreement of the new and old approaches in the application to nucleon-deuteron elastic scattering and the breakup reaction is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961); Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory (Davey, New York, 1965); L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Several Particle Systems (Kluwer Academic Publishers, Dordrecht, 1993).

    MathSciNet  Google Scholar 

  2. W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer-Verlag, 1983).

  3. E.W. Schmidt, H. Ziegelmann, The Quantum Mechanical Three-Body Problem (Pergamon Press, Oxford, 1974).

    Google Scholar 

  4. J. Haidenbauer, Y. Koike, W. Plessas, Phys. Rev. C 33, 439 (1986).

    Article  ADS  Google Scholar 

  5. W.M. Kloet, J.A. Tjon, Nucl. Phys. A 210, 380 (1973).

    Article  ADS  Google Scholar 

  6. H. Witała, W. Glöckle, Th. Cornelius, Few-Body Syst., Suppl. 2, 555 (1987).

    Google Scholar 

  7. W. Glöckle, G. Hasberg, A.R. Neghabian, Z. Phys. A 305, 217 (1982).

    Article  MathSciNet  Google Scholar 

  8. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  9. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).

    Article  ADS  Google Scholar 

  10. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).

    Article  ADS  Google Scholar 

  11. S.A. Coon et al., Nucl. Phys. A 317, 242 (1979); S.A. Coon, W. Glöckle, Phys. Rev. C 23, 1790 (1981).

    Article  ADS  Google Scholar 

  12. B.S. Pudliner et al., Phys. Rev. C 56, 1720 (1997).

    Article  ADS  Google Scholar 

  13. W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996).

    Article  ADS  Google Scholar 

  14. C.R. Howell et al., Phys. Rev. Lett. 61, 1565 (1988).

    Article  ADS  Google Scholar 

  15. M. Stephan et al., Phys. Rev. C 39, 2133 (1989).

    Article  ADS  Google Scholar 

  16. G. Rauprich et al., Nucl. Phys. A 535, 313 (1991).

    Article  ADS  Google Scholar 

  17. J.E. McAninch et al., Phys. Lett. B 307, 13 (1993).

    Article  ADS  Google Scholar 

  18. L. Sydow et al., Nucl. Phys. A 567, 55 (1994).

    Article  ADS  Google Scholar 

  19. M. Allet et al., Phys. Lett. B 376, 255 (1996).

    Article  ADS  Google Scholar 

  20. H.R. Setze et al., Phys. Lett. B 388, 229 (1996).

    Article  ADS  Google Scholar 

  21. H. Rohdjess et al., Phys. Rev. C 57, 2111 (1998).

    Article  ADS  Google Scholar 

  22. W.P. Abfalterer et al., Phys. Rev. Lett. 81, 57 (1998).

    Article  ADS  Google Scholar 

  23. H. Sakai et al., Phys. Rev. Lett. 84, 5288 (2000).

    Article  ADS  Google Scholar 

  24. R. Bieber et al., Phys. Rev. Lett. 84, 606 (2000).

    Article  ADS  Google Scholar 

  25. R.V. Cadman et al., Phys. Rev. Lett. 86, 967 (2001).

    Article  ADS  Google Scholar 

  26. K. Ermisch et al., Phys. Rev. Lett. 86, 5862 (2001).

    Article  ADS  Google Scholar 

  27. K. Hatanaka et al., Phys. Rev. C 66, 044002 (2002).

    Article  ADS  Google Scholar 

  28. K. Sekiguchi et al., Phys. Rev. C 70, 014001 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Ermisch et al., Phys. Rev. C 71, 064004 (2005).

    Article  ADS  Google Scholar 

  30. H.R. Amir-Ahmadi et al., Phys. Rev. C 75, 041001(R) (2007).

    Article  ADS  Google Scholar 

  31. H. Witała, W. Glöckle, D. Hüber, J. Golak, H. Kamada, Phys. Rev. Lett. 81, 1183 (1998).

    Article  ADS  Google Scholar 

  32. H. Witała et al., Phys. Rev. C 63, 024007 (2001).

    Article  ADS  Google Scholar 

  33. H. Witała, J. Golak, W. Glöckle, H. Kamada, Phys. Rev. C 71, 054001 (2005).

    Article  ADS  Google Scholar 

  34. K. Sekiguchi et al., Phys. Rev. Lett. 95, 162301 (2005).

    Article  ADS  Google Scholar 

  35. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).

    Article  ADS  Google Scholar 

  36. J. Golak, R. Skibiński, H. Witała, W. Glöckle, A. Nogga, H. Kamada, Phys. Rep. 415, 89 (2005).

    Article  ADS  Google Scholar 

  37. D. Hüber, H. Kamada, H. Witała, W. Glöckle, Few-Body Syst. 16, 165 (1994).

    Article  ADS  Google Scholar 

  38. R. Balian, E. Berézin, Nuovo Cimento B 2, 403 (1969).

    Article  ADS  Google Scholar 

  39. B.D. Keister, W.N. Polyzou, Phys. Rep. C 73, 014005 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Witała.

Additional information

Communicated by U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witała, H., Glöckle, W. A new form of three-body Faddeev equations in the continuum. Eur. Phys. J. A 37, 87–95 (2008). https://doi.org/10.1140/epja/i2008-10610-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10610-x

PACS

Navigation