Skip to main content
Log in

Quantum mechanical ab initio simulation of the electron screening effect in metal deuteride crystals

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Czerski, A. Huke, P. Heide, M. Hoeft, G. Ruprecht, in Nuclei in the Cosmos V, Proceedings of the International Symposium on Nuclear Astrophysics, Volos, Greece, July 6-11, 1998, edited by N. Prantzos, S. Harissopulos (Editions Frontières) p. 152.

  2. K. Czerski, A. Huke, A. Biller, P. Heide, M. Hoeft, G. Ruprecht, Europhys. Lett. 54, 449 (2001).

    Article  ADS  Google Scholar 

  3. A. Huke, Die Deuteronen-Fusionsreaktionen in Metallen, PhD Thesis, Technische Universität Berlin, 2002, http:// edocs.tu-berlin.de/diss/2002/huke\_armin.htm.

  4. H. Yuki, J. Kasagi, A.G. Lipson, T. Ohtsuki, T. Baba, T. Noda, B.F. Lyakhov, N. Asami, JETP Lett. 68, 823 (1998).

    Article  ADS  Google Scholar 

  5. J. Kasagi, H. Yuki, T. Baba, T. Noda, T. Ohtsuki, A.G. Lipson, J. Phys. Soc. Jpn. 71, 2281 (2002).

    Article  Google Scholar 

  6. F. Raiola, Eur. Phys. J. A 13, 377 (2002).

    Article  ADS  Google Scholar 

  7. F. Raiola, Phys. Lett. B 547, 193 (2002).

    Article  ADS  Google Scholar 

  8. C. Bonomo, Nucl. Phys. A 719, 37c (2003).

    Article  ADS  Google Scholar 

  9. F. Raiola, Eur. Phys. J. A 19, 283 (2004).

    Article  ADS  Google Scholar 

  10. U. Greife, F. Gorris, M. Junker, C. Rolfs, D. Zahnow, Z. Phys. A 351, 107 (1995).

    Article  ADS  Google Scholar 

  11. A. Huke, K. Czerski, P. Heide, Nucl. Instrum. Methods B 256, 599 (2007).

    Article  ADS  Google Scholar 

  12. H. J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327, 461 (1987).

    ADS  Google Scholar 

  13. K. Czerski, A. Huke, P. Heide, G. Ruprecht, Europhys. Lett. 68, 363 (2004).

    Article  ADS  Google Scholar 

  14. K. Czerski, A. Huke, P. Heide, G. Ruprecht, Eur. Phys. J. A 27, s01, 83 (2006).

    Google Scholar 

  15. S. Ichimaru, Rev. Mod. Phys. 65, 252 (1993).

    Article  ADS  Google Scholar 

  16. A. Huke, K. Czerski, G. Ruprecht, N. Targosz, W. Żebrowski, P. Heide, submitted to Phys. Rev. C.

  17. T.D. Shoppa, M. Jeng, S.E. Koonin, K. Langanke, R. Seki, Nucl. Phys. A 605, 387 (1996).

    Article  ADS  Google Scholar 

  18. Hans-Herbert Schmidtke, Quantenchemie, 2nd edition (VCH, Weinheim, 1994).

  19. A. Huke, K. Czerski, T. Dorsch, A. Biller, P. Heide, G. Ruprecht, Eur. Phys. J. A 27, s01, 187 (2006).

    Google Scholar 

  20. M. Born, J.R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927).

    ADS  Google Scholar 

  21. D.R. Hartree, The calculation of atomic structures (John Wiley, New York, 1957).

  22. I.N. Levine, Quantum Chemistry, 4th edition (Prentice Hall, Englewood Cliffs, 1991).

  23. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989).

  24. Albert Messiah, Quantenmechanik, Vol. 1, 2nd edition (Walter de Gruyter Verlag, Berlin, 1991).

  25. A. Goldberg, H.M. Schey, J.L. Schwartz, Am. J. Phys. 35, 177 (1967).

    Article  ADS  Google Scholar 

  26. I. Galbraith, Y.S. Ching, E. Abraham, Am. J. Phys. 52, 60 (1984).

    Article  ADS  Google Scholar 

  27. T.D. Shoppa, S.E. Koonin, K. Langanke, R. Seki, Phys. Rev. C 48, 837 (1993).

    Article  ADS  Google Scholar 

  28. P. Čarsky, M. Urban, Ab initio Calculations, in Lect. Notes Chem., No. 16 (Springer, Berlin, 1980).

  29. L. Zülicke, Quantenchemie, Vol. 1 (Deutscher Verlag der Wissenschaften, Berlin, 1973).

  30. R.J. Bartlett, J. Phys. Chem. 93, 1697 (1989).

    Article  Google Scholar 

  31. C. Møller, M.S. Plesset, Phys. Rev. 46, 618 (1934).

    Article  ADS  MATH  Google Scholar 

  32. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, 1989).

  33. J.K. Labanowski, J.W. Andzelm (Editors), Density Functional Methods in Chemistry (Springer, Berlin, 1991).

  34. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  35. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Ziegler, Chem. Rev. 91, 651 (1991).

    Article  Google Scholar 

  37. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  38. A.D. Becke, J. Chem. Phys. 88, 1053 (1988).

    Article  ADS  Google Scholar 

  39. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  40. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200 (1989).

    Article  ADS  Google Scholar 

  41. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  42. B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993).

    Article  ADS  Google Scholar 

  43. James B. Foresman, Æleen Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edition (Gaussian Inc., Pittsburgh, 1996).

  44. C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

    Article  MATH  ADS  Google Scholar 

  45. G.G. Hall, Proc. R. Soc. London, Ser. A 205, 541 (1951).

    MATH  Google Scholar 

  46. J.P. Pople, R.K. Nesbet, J. Chem. Phys. 22, 571 (1954).

    Article  ADS  Google Scholar 

  47. H. Preuß, Grundriß der Quantenchemie, in Hochschultaschenbücher, Number 10 (Bibliographisches Institut, Mannheim, 1962).

  48. W.J. Hehre, R.F. Stewart, J.A. Pople, J. Chem. Phys. 51, 2657 (1969).

    Article  ADS  Google Scholar 

  49. J.B. Collins, P.v.R. Schleyer, J.S. Blinkley, J.A. Pople, J. Chem. Phys. 64, 5142 (1976).

    Article  ADS  Google Scholar 

  50. T.H. Dunning jr., P.J. Hay, in Modern Theoretical Chemistry, edited by H.F. Schaefer III (Plenum Press, New York, 1976) pp. 1-28.

  51. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985).

    Article  ADS  Google Scholar 

  52. W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985).

    Article  ADS  Google Scholar 

  53. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  ADS  Google Scholar 

  54. J.S. Blinkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102, 939 (1980).

    Article  Google Scholar 

  55. M.S. Gordon, J.S. Blinkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am. Chem. Soc. 104, 2797 (1982).

    Article  Google Scholar 

  56. W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. Pople, J.S. Blinkley, J. Am. Chem. Soc. 104, 5039 (1982).

    Article  Google Scholar 

  57. R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724 (1971).

    Article  ADS  Google Scholar 

  58. W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972).

    Article  ADS  Google Scholar 

  59. P.C. Hariharan, J.A. Pople, Mol. Phys. 27, 209 (1974).

    Article  ADS  Google Scholar 

  60. M.S. Gordon, Chem. Phys. Lett. 76, 163 (1980).

    Article  ADS  Google Scholar 

  61. P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973).

    Article  Google Scholar 

  62. G.A. Petersson, A. Bennet, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J. Mantzaris, J. Chem. Phys. 89, 2193 (1988).

    Article  ADS  Google Scholar 

  63. G.A. Petersson, M.A. Al-Laham, J. Chem. Phys. 94, 6091 (1991).

    Article  ADS  Google Scholar 

  64. A.D. McLean, G.S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  ADS  Google Scholar 

  65. R. Krishnan, J.S. Blinkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  66. A.J.H. Wachters, J. Chem. Phys. 52, 1033 (1970).

    Article  ADS  Google Scholar 

  67. P.J. Hay, J. Chem. Phys. 66, 4377 (1977).

    Article  ADS  Google Scholar 

  68. K. Raghavachari, G.W. Trucks, J. Chem. Phys. 91, 1062 (1989).

    Article  ADS  Google Scholar 

  69. R.W.G. Wyckoff, Crystal Structures, Vols. I--IV, 2nd edition (Wiley, New York, 1962-1966).

  70. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian 94, revision e.1. Technical report, Gaussian Inc., Pittsburgh, 1995.

  71. K. Czerski, A. Huke, P. Heide, G. Schiwietz, Nucl. Instrum. Methods B 193, 183 (2002).

    Article  ADS  Google Scholar 

  72. Reinhard Starkl, Neue analytische Methoden der mathematischen Physik, 1st edition (VWF, Verlag für Wissenschaft und Forschung, Berlin, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Huke.

Additional information

Xiangdong Ji

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huke, A., Czerski, K., Chun, S.M. et al. Quantum mechanical ab initio simulation of the electron screening effect in metal deuteride crystals. Eur. Phys. J. A 35, 243–252 (2008). https://doi.org/10.1140/epja/i2007-10532-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2007-10532-1

PACS.

Navigation