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Abstract. A Lorentzian-Function Approximation (LFA) has been developed in calculating the nonresonant
reaction rate of charged-particle–induced reactions. The nonresonant reaction rate and the effective S-factor
have been represented in terms of LFA. In the frame of LFA, the nonresonant reaction taken place within
the Gamow window can be considered as a “resonance reaction” with a width of Γ which is equal to that
of 1/e width (∆) in a well-known Gaussian-Function Approximation (GFA).

PACS. 25.40.Lw Radiative capture

The astrophysical reaction rate of a charged-particle–
induced nonresonant reaction, which is also defined as di-
rect capture reaction, has been discussed detailedly in
many works [1–3]. It is well known that the reaction
rate per particle pair 〈σv〉 can be written in the form of
eq. (4.17) in [3], i.e.,

〈σv〉=
(

8

πµ

)1/2
1

(kT )3/2

∫

∞

0

S(E)exp

[
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kT
− b

E1/2

]

dE,

(1)
where all the quantities defined here follow exactly the
same definitions in [3]. For a given stellar temperature T ,
nuclear reactions take place in a relatively narrow energy
window around the effective burning energy of E0 (see
fig. 4.6 in [3], and the present fig. 1).

Frequently, the S(E) factor is nearly a constant over
the window,

S(E) = S(E0) = const. (2)

In this condition, eq. (1) reduces to

〈σv〉=
(
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(kT )3/2
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]
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(3)
Although the integration can be computed by the numer-
ical method readily, a Gaussian-Function Approximation
(GFA) for the integrand in eq. (3) had been used in order
to make the physics clear. The details of the approxima-
tion can be found in [2,3]. Briefly, the exponential term in
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Fig. 1. Curves for the Gamow peak for the p + p re-
action at T6 = 15, as obtained from an exact expression
and from a Gaussian-Function Approximation (GFA) as well
as a Lorentzian-Function Approximation (LFA). Here, E0 =
5.89 keV with Γ = ∆ = 6.37 keV.

the integrand can be fairly well approximated by a Gaus-
sian function:

exp

(

− E

kT
− b

E1/2

)

= Imaxexp

[

−
(

E − E0

∆/2

)2
]

. (4)

In this approximation, the 1/e width of the peak is defined
as the effective width ∆ of the energy window, wherein
most of the reactions take place (fig. 1). This width is
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determined by matching the second derivative of eq. (4),
i.e.,

∆ =
4

31/2
(E0kT )1/2, (5)

as it is shown in fig. 1. Actually the quantity ∆E0 in-
dicated in fig. 4.6 [3] is improper, and it should be the
1/e width rather than the full width at half maximum
(FWHM) of the Gamow peak. And all other approximated
equations, e.g., eqs. (4.26), (4.27), (4.32) and (4.34) in [3],
have been deduced from this Gaussian-Function Approx-
imation (GFA).

In the present work, a Lorentzian-Function Approxi-
mation (LFA) has been used to obtain some similar equa-
tions as those deduced from GFA. As for LFA,

exp

(

− E

kT
− b

E1/2

)

= Imax

(Γ/2)2

(E − E0)2 + (Γ/2)2
. (6)

Similarly, the full width at half maximum (FWHM) of
this Lorentzian function, Γ , is determined by matching
the second derivative of eq. (6), with a result of Γ = ∆ as
shown in fig. 1. In terms of LFA, the FWHM (Γ ) of the
peak is defined as the effective width of the energy win-
dow, wherein most of the reactions take place. Therefore,
the nonresonant reactions which have taken place within
the Gamow window can be considered as a “resonance re-
action” with a width of Γ , and this width, although it
is equal to the 1/e width of GFA (i.e., ∆), is of a novel
physical meaning.

With GFA in eq. (4), the reaction rate becomes
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(7)
by using a result of Gaussian integration:

∫

∞

−∞

e−ax2

dx =
√

π/a. (8)

It should be noted that the exact derivation of eq. (7) (i.e.,
eq. (4.27) in [3]) requires the lower limit of integration to
be set as −∞, although it is not necessarily so small, e.g.,
−E0 is small enough. As discussed in the literature [2,3],
the exact form of exp

(

− E
kT − b

E1/2

)

is slightly asymmetric
around the energy E0 compared with the Gaussian distri-
bution. This general feature of the Gamow peak can be
accounted for when calculating the integral in eq. (3) by
the factor F (τ):

F (τ) = 1 +
5

12

1

τ
− 35

288

1

τ2
+ · · · , (9)

where in general the correction provided by the 1/τ is
sufficient [3]. Generally speaking this correction is very
small, e.g., in first order (at T6 = 15):

p + p : F (τ) = 1.030,
16O +16 O : F (τ) = 1.00076.

With LFA in eq. (6), the reaction rate becomes
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It is obvious that the rate calculated by eq. (10) is over-
estimated by a factor of

√
π compared to that calculated

by GFA. Similar to GFA, a correction factor L(τ) is in-
troduced here to account for the feature of Gamow peak,
and simply

L(τ) =
1√
π

F (τ). (11)

Therefore, using only the first-order correction the reac-
tion rate 〈σv〉, with respect to GFA and LFA, can be writ-
ten in the same form (i.e., eq. (4.32) in [3])

〈σv〉=
(

2
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)1/2
Γ (or∆)

(kT )3/2
S(E0)
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5

12τ

)

exp(−τ). (12)

If the S(E) factor is described by a slowly varying func-
tion of energy E rather than by a constant, as assumed
above (eq. (2)), it can be expanded in a Taylor series,

S(E) = S(0) + Ṡ(0)E +
1

2
S̈(0)E2 + · · · . (13)

As a result of GFA, one can replace the constant S(E0)
factor in eq. (7) (i.e., eq. (4.27) in [3]) by an effective
S-factor [1,3]:
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while as a result of LFA, one can obtain

S
LFA
eff (E0) = S(0)

(

1 +
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For the general case kT ≪ E0, the difference between
the present derived effective S-factor (SLFA

eff
(E0)) and the

previously derived one is quite small.
In summary, a Lorentzian-Function Approximation

(LFA) has been developed in calculating the nonresonant
reaction rate of charged-particle–induced reactions. In the
LFA frame, the nonresonant reaction which has taken
place within the Gamow window can be considered as a
“resonance reaction” with a width of Γ , and this width
is equal to the 1/e width (∆) in a well-known Gaussian-
Function Approximation. This interpretation is supposed
to have a novel physical meaning.
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supporting me during the preparation of the manuscript.
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