Skip to main content
Log in

Break-up stage restoration in multifragmentation reactions

The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In the case of Xe + Sn at 32MeV/nucleon multifragmentation reaction break-up fragments are built up from the experimentally detected ones using evaluations of light-particle evaporation multiplicities which thus settle fragment internal excitation. Freeze-out characteristics are extracted from experimental kinetic energy spectra under the assumption of full decoupling between fragment formation and energy dissipated in different degrees of freedom. The thermal kinetic energy is determined uniquely while for the freeze-out volume - collective energy a multiple solution is obtained. The coherence between the solutions of the break-up restoration algorithm and the predictions of a multifragmentation model with identical definition of primary fragments is regarded as a way to select the true value. The broad kinetic energy spectrum of 3He is consistent with the break-up genesis of this isotope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. F. Gulminelli, Ph. Chomaz, O. Juillet, M.J. Ison, C.O. Dorso, in Proceedings for the VI Latin American Symposium on Nuclear Physics and Applications, Iguazu, Argentina, 3-7 October 2005, edited by A.J. Kreiner, O. Civitarese, C. Dorso, G.G. Bermudez, A.J. Pacheco, N.N. Scoccola, nucl-th/0511012, p. 332.

  2. J.D. Frankland, Nucl. Phys. A 689, 905 (2001).

    Article  ADS  Google Scholar 

  3. J.D. Frankland, Nucl. Phys. A 689, 940 (2001).

    Article  ADS  Google Scholar 

  4. S. Hudan, Phys. Rev. C 67, 064613 (2003).

    Article  ADS  Google Scholar 

  5. S. Piantelli, Phys. Lett. B 627, 18 (2005).

    Article  ADS  Google Scholar 

  6. R.J. Charity, Phys. Rev. C 58, 1073 (1998).

    Article  ADS  Google Scholar 

  7. N. Le Neindre, These de doctorat, Université de Caen (1999), http://tel.ccsd.cnrs.fr/tel-00003741

  8. V.I. Bogatin, Yad. Fiz. 32, 1363 (1980).

    Google Scholar 

  9. H.H. Gutbrod, Phys. Rev. Lett. 37, 667 (1976).

    Article  ADS  Google Scholar 

  10. W. Markiel, Nucl. Phys. A 485, 445 (1988).

    Article  ADS  Google Scholar 

  11. G. Poggi, Nucl. Phys. A 586, 755 (1995).

    Article  ADS  Google Scholar 

  12. R. Bougault, in Proceedings of the XXVII International Workshop on Gross Properties of Nuclei and Nuclear Excitations, Hirschegg, 1999, edited by H. Feldmeier, J. Knoll, W. Noerenberg, J. Wambach (GSI Darmstadt, 1999) p. 24.

  13. W. Neubert, A.S. Botvina, Eur. Phys. J. A 7, 101 (2000).

    Article  ADS  Google Scholar 

  14. W.A. Friedman, Phys. Rev. C 42, 667 (1990).

    Article  ADS  Google Scholar 

  15. Ad.R. Raduta, E. Bonnet, B. Borderie, N. Le Neindre, M.F. Rivet, Phys. Rev. C 72, 057603 (2005).

    Article  ADS  Google Scholar 

  16. M.F. Rivet, Phys. Rev. C 25, 2430 (1982).

    Article  ADS  Google Scholar 

  17. L. Vaz, Z. Phys. A 311, 89 (1983).

    Article  ADS  Google Scholar 

  18. Bao-An Li, D.H.E. Gross, V. Lips, H. Oeschler, Phys. Lett. B 335, 1 (1994).

    Article  ADS  Google Scholar 

  19. T.C. Sangster, M. Begemann-Blaich, Th. Blaich, H.C. Britt, L.F. Hansen, M.N. Namboodiri, G. Peilert, Phys. Rev. C 51 (1995).

  20. M. Begemann-Blaich, Phys. Rev. C 58, 1639 (1998).

    Article  ADS  Google Scholar 

  21. D.H.E. Gross, Rep. Prog. Phys. 53, 605 (1990)

    Article  ADS  Google Scholar 

  22. M. Parlog, G. Tabacaru, J.P. Wieleczko, J.D. Frankland, B. Borderie, A. Chbihi, M. Colonna, M.F. Rivet, Eur. Phys. J. A 25, 223 (2005) and references therein.

    Article  ADS  Google Scholar 

  23. A.M. Hellwege, K.H. Hellwege (Editors), Numerical Data and Functional Relationships in Science and Technology, Landolt-Bornstein, Vol. I (Springer-Verlag, Berlin, 1961).

  24. Al.H. Raduta, Ad.R. Raduta, Phys. Rev. C 55, 1344 (1997)

    Article  ADS  Google Scholar 

  25. A. Le Fevre, Nucl. Phys. A 735, 219 (2004).

    Article  ADS  Google Scholar 

  26. J.N. De, S.K. Samaddar, X. Vinas, M. Centelles, Phys. Lett. B 638, 160 (2006).

    Article  ADS  Google Scholar 

  27. A.S. Iljinov, Nucl. Phys. A 543, 517 (1992).

    Article  ADS  Google Scholar 

  28. J.B. Natowitz, R. Wada, K. Hagel, T. Keutgen, M. Murray, A. Makeev, L. Qin, P. Smith, C. Hamilton, Phys. Rev. C 65, 034618 (2002) and references therein.

    Article  ADS  Google Scholar 

  29. M. Baldo, L.S. Ferreira, O.E. Nicotra, Phys. Rev. C 69, 034321 (2004).

    Article  ADS  Google Scholar 

  30. Al.H. Raduta, Ad.R. Raduta, Nucl. Phys. A 703, 876 (2002).

    Article  ADS  Google Scholar 

  31. A.H. Raduta, M. Colonna, V. Baran, M. Di Toro, Phys. Rev. C 74, 034604 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Colonna, Nucl. Phys. A 642, 449 (1998).

    Article  ADS  Google Scholar 

  33. S.E. Koonin, J. Randrup, Nucl. Phys. A 474, 173 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

P. Braun-Munzinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raduta, A.R., Bonnet, E., Borderie, B. et al. Break-up stage restoration in multifragmentation reactions. Eur. Phys. J. A 32, 175–182 (2007). https://doi.org/10.1140/epja/i2006-10381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10381-4

PACS.

Navigation