Skip to main content
Log in

Possible links between the liquid-gas and deconfinement-hadronization phase transitions

  • Dynamics and Thermodynamics with Nuclear Degrees of Freedom
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

It is commonly accepted that strongly interacting matter has several phase transitions in different domains of temperature and baryon density. In this contribution I discuss two most popular phase transitions which, in principle, can be accessed in nuclear collisions. One of them, the liquid-gas phase transition, is well established theoretically and studied experimentally in nuclear multifragmentation reactions at intermediate energies. The other one, the deconfinement-hadronization phase transition, is at the focus of present and future experimental studies with relativistic heavy-ion beams at SPS, RHIC and LHC. Possible links between these two phase transitions are identified from the viewpoint of their manifestation in violent nuclear collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.P. Bondorf, R. Donangelo, I.N. Mishustin, H. Schulz, Nucl. Phys. A 444, 460 (1985).

    Article  ADS  Google Scholar 

  2. J. Pochodzalla, ALADIN Collaboration, Phys. Rev. Lett. 75, 1040 (1995).

    Article  ADS  Google Scholar 

  3. Ph. Chomaz, F. Gulminelli, V. Duflot, Phys. Rev. E 64, 046114 (2001).

    Article  ADS  Google Scholar 

  4. M. D'Agostino, Phys. Lett. B 473, 219 (2000).

    Article  ADS  Google Scholar 

  5. Ph. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389, 263 (2004).

    Article  ADS  Google Scholar 

  6. B. Borderie, Phys. Rev. Lett. 86, 3252 (2001).

    Article  ADS  Google Scholar 

  7. A.S. Botvina, Nucl. Phys. A 584, 737 (1995).

    Article  ADS  Google Scholar 

  8. M. D'Agostino, Nucl. Phys. A 650, 329 (1999).

    Article  ADS  Google Scholar 

  9. B.K. Srivastava, Phys. Rev. C 65, 054617 (2002).

    Article  ADS  Google Scholar 

  10. J.B. Elliott, Phys. Rev. Lett. 88, 042701 (2002).

    Article  ADS  Google Scholar 

  11. F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001).

    Article  ADS  Google Scholar 

  12. M.A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbarshot, Phys. Rev. D 58, 096007 (1998).

    Article  ADS  Google Scholar 

  13. J. Berges, K. Rajagopal, Nucl. Phys. B 538, 215 (1999).

    Article  ADS  Google Scholar 

  14. O. Scavenius, A. Mocsy, I.N. Mishustin, D. Rischke, Phys. Rev. C 64, 045202 (2001).

    Article  ADS  Google Scholar 

  15. Z. Fodor, S.D. Katz, JHEP 0203, 014 (2002).

    Article  ADS  Google Scholar 

  16. C.R. Allton, Phys. Rev. D 66, 074507 (2002).

    Article  ADS  Google Scholar 

  17. R.V. Gavai, S. Gupta, Phys. Rev. D 68, 034506 (2003).

    Article  ADS  Google Scholar 

  18. M. Stephanov, K. Rajagopal, E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998).

    Article  ADS  Google Scholar 

  19. Boris Berdnikov, Krishna Rajagopal, Phys. Rev. D 61, 105017 (2000).

    Article  ADS  Google Scholar 

  20. J. Adams, STAR Collaboration, Nucl. Phys. A 757, 102 (2005).

    Article  ADS  Google Scholar 

  21. P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Phys. Lett. B 518, 41 (2001)

    Article  ADS  Google Scholar 

  22. W. Reisdorf, FOPI Collaboration, Nucl. Phys. A 612, 493 (1997).

    Article  ADS  Google Scholar 

  23. Nu Xu, Prog. Part. Nucl. Phys. 53, 165 (2004).

    Article  ADS  Google Scholar 

  24. I.N. Mishustin, Nucl. Phys. A 630, 111c (1998).

    Article  ADS  Google Scholar 

  25. D.E. Grady, J. Appl. Phys. 53, 322 (1981).

    Article  ADS  Google Scholar 

  26. J. Aichelin, J. Hüfner, Phys. Lett. B 136, 5 (1984).

    Article  ADS  Google Scholar 

  27. E.L. Knuth, U. Henne, J. Chem. Phys. 110, 2664 (1999).

    Article  ADS  Google Scholar 

  28. B.L. Holian, D.E. Grady, Phys. Rev. Lett. 60, 1355 (1988).

    Article  ADS  Google Scholar 

  29. I.N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999).

    Article  ADS  Google Scholar 

  30. I.N. Mishustin, in Proceedings of the International Conference New Trends in High-Energy Physics, Crimea, Ukraine, September 10-17, 2005, hep-ph/0512366

  31. C.M. Huang, E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995)

    Article  ADS  Google Scholar 

  32. D. Rischke, M. Gyulassy, Nucl. Phys. A 597, 701 (1996)

    Article  ADS  Google Scholar 

  33. S. Digal, A.M. Srivastava, Phys. Rev. Lett. 80, 1841 (1998).

    Article  ADS  Google Scholar 

  34. L.P. Csernai, I.N. Mishustin, Phys. Rev. Lett. 74, 5005 (1995).

    Article  ADS  Google Scholar 

  35. I.N. Mishustin, O. Scavenius, Phys. Rev. Lett. 83, 3134 (1999).

    Article  ADS  Google Scholar 

  36. O. Scavenius, A. Dumitru, E.S. Fraga, J.T. Lenaghan, A.D. Jackson, Phys. Rev. D 63, 116003 (2001).

    Article  ADS  Google Scholar 

  37. K. Paech, H. Stoecker, A. Dumitru, Phys. Rev. C 68, 044907 (2003).

    Article  ADS  Google Scholar 

  38. J.D. Bjorken, K.L. Kowalski, C.C. Taylor, SLAC-PUB-6413, Sep. 1993, hep-ph/9309235.

  39. M. Alford, K. Rajagopal, F. Wilczek, Phys. Lett. B 422, 247 (1998).

    Article  ADS  Google Scholar 

  40. G. Baym, H. Heiselberg, Phys. Lett. B 469, 7 (1999).

    Article  ADS  Google Scholar 

  41. M. Rybczynski, NA49 Collaboration, J. Phys. Conf. Ser. 5, 74 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Mishustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishustin, I.N. Possible links between the liquid-gas and deconfinement-hadronization phase transitions. Eur. Phys. J. A 30, 311–316 (2006). https://doi.org/10.1140/epja/i2006-10125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10125-6

PACS.

Navigation