Skip to main content
Log in

High-energy probes

  • Dynamics and Thermodynamics with Nuclear Degrees of Freedom
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We review some results on energetic particle production in heavy-ion collisions below roughly 100A·MeV, both theoretically and experimentally. We discuss the possible mechanisms of particle production, as well as the possibility to gather information on the nuclear equation of state (EOS) from data. Results on subthreshold pions, energetic photons, nucleons and light charged particles (Z ⩽ 2) are discussed and contrasted to microscopic models. Important information about the first stages of the reaction are obtained by such probes. At present, we can conclude that we have at least a qualitative understanding of the processes involved when such particles are produced. However, a quantitative determination of relevant EOS parameters is still missing. The production mechanism close to the kinematical threshold (incoherent, cooperative or statistical) is not completely elucidated either. This calls for new data using more modern detector systems and comparison to more refined microscopic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Migneco, Nucl. Instrum. Methods. Phys. Res. A 314, 31 (1992).

    ADS  Google Scholar 

  2. J. Pouthas, Nucl. Instrum. Methods. Phys. Res. A 357, 418 (1995).

    ADS  Google Scholar 

  3. R. Wada, Phys. Rev. C 69, 044610 (2004).

    ADS  Google Scholar 

  4. A. Pagano, Nucl. Phys. A 681, 331 (2001).

    ADS  Google Scholar 

  5. G. Martinez, Nucl. Instrum. Methods. Phys. Res. A 391, 435 (1997).

    ADS  Google Scholar 

  6. R.T. De Souza, Nucl. Instrum. Methods. Phys. Res. A 295, 109 (1990).

    ADS  Google Scholar 

  7. I. Iori, Nucl. Instrum. Methods. Phys. Res. A 325, 458 (1993).

    ADS  Google Scholar 

  8. W. Zuo, Eur. Phys. J. A 14, 469 (2002)

    ADS  Google Scholar 

  9. A. Kievski, Proceedings of the 10th Conference on Problems in Theoretical Nuclear Physics, Cortona 6-9 October 2004 (World Scientific, 2005).

  10. A. Bonasera, M. Bruno, C.O. Dorso, P.F. Mastinu, Riv. Nuovo Cimento 23, 1 (2000).

    Google Scholar 

  11. B. Povh, K. Rith, C. Scholz, F. Zetsche, Particles and Nuclei ? An Introduction to the Physical Concepts (Springer, 1995).

  12. R. Coniglione, Phys. Lett. B 471, 339 (2000).

    ADS  Google Scholar 

  13. P. Sapienza, Phys. Rev. Lett. 87, 072701 (2001).

    ADS  Google Scholar 

  14. W. Cassing, Phys. Rep. 188, 363 (1990).

    ADS  Google Scholar 

  15. A. Bonasera, F. Gulminelli, J. Molitoris, Phys. Rep. 243, 1 (1994).

    ADS  Google Scholar 

  16. G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988).

    ADS  Google Scholar 

  17. J. Aichelin, Phys. Rep. 202, 233 (1991).

    ADS  Google Scholar 

  18. J. Aichelin, Comparison between the different transport codes, in preparation.

  19. J. Julien, Phys. Lett. B 264, 269 (1991).

    ADS  Google Scholar 

  20. P. Piattelli, Nucl. Phys. A 649, 181c (1996).

    ADS  Google Scholar 

  21. K.A. Snover, Annu. Rev. Nucl. Part. Sci. 36, 545 (1986).

    ADS  Google Scholar 

  22. J.J. Gardhøje, Annu. Rev. Nucl. Part. Sci. 42, 483 (1992).

    ADS  Google Scholar 

  23. J.H. Le Faou, Phys. Rev. Lett. 72, 3321 (1994).

    ADS  Google Scholar 

  24. H. Noll, Phys. Rev. Lett. 52, 1284 (1984).

    ADS  Google Scholar 

  25. E. Grosse, Nucl. Phys. A 447, 611c (1985)

    MathSciNet  ADS  Google Scholar 

  26. N. Gan, Phys. Rev. C 49, 298 (1994).

    ADS  Google Scholar 

  27. J. Clayton, Phys. Rev. C 40, 1207 (1989).

    ADS  Google Scholar 

  28. D. Vasak, Nucl. Phys. A 428 (1984).

  29. Che Ming Ko, G. Bertsch, J. Aichelin, Phys. Rev. C 31, R2324 (1985).

  30. K. Nakayama, G.F. Bertsch, Phys. Rev. C 36, 1848 (1987).

    ADS  Google Scholar 

  31. W. Bauer, Phys. Rev. C 34, 2127 (1986)

    ADS  Google Scholar 

  32. B.A. Remington, M. Blann, G.F. Bertsch, Phys. Rev. Lett. 57, 2909 (1986)

    ADS  Google Scholar 

  33. J.D. Jackson, Classical Electrodynamics (J. Wiley and Sons).

  34. W. Cassing, Phys. Lett. B 181, 217 (1986).

    ADS  Google Scholar 

  35. K. Nakayama, Phys. Rev. C 42, 1009 (1989).

    Google Scholar 

  36. H. Huisman, Phys. Rev. Lett. 83, 4017 (1999).

    ADS  Google Scholar 

  37. M. Volkerts, Phys. Rev. Lett. 90, 062301-1 (2003).

    ADS  Google Scholar 

  38. M. Volkerts, Phys. Rev. Lett. 92, 202301-1 (2004).

    ADS  Google Scholar 

  39. N. Herrmann, Phys. Rev. Lett. 60, 1630 (1988).

    ADS  Google Scholar 

  40. H. Nifenecker, J.P. Bondorf, Nucl. Phys. A 442, 478 (1985)

    ADS  Google Scholar 

  41. R. Shyam, J. Knoll, Nucl. Phys. A 448, 322 (1986).

    ADS  Google Scholar 

  42. J. Stevenson, Phys. Rev. Lett. 57, 555 (1986).

    ADS  Google Scholar 

  43. G. Breitbach, Phys. Rev. C 40, 2893 (1989).

    ADS  Google Scholar 

  44. C.L. Tam, Phys. Rev. C 38, 2526 (1988).

    ADS  Google Scholar 

  45. N. Alamanos, Phys. Lett. B 173, 392 (1986).

    ADS  Google Scholar 

  46. M. Kwato Njock, Nucl. Phys. A 489, 368 (1988).

    ADS  Google Scholar 

  47. R. Hingmann, Phys. Rev. Lett. 58, 759 (1987).

    ADS  Google Scholar 

  48. T. Reposeur, Phys. Lett. B 276, 418 (1992).

    ADS  Google Scholar 

  49. V. Metag, Nucl. Phys. A 488, 483c (1988).

    ADS  Google Scholar 

  50. S. Riess, Phys. Rev. Lett. 69, 1504 (1992).

    ADS  Google Scholar 

  51. E. Migneco, Phys. Lett. B 298, 46 (1993).

    ADS  Google Scholar 

  52. G. Martinez, Phys. Lett. B 334, 23 (1994).

    ADS  Google Scholar 

  53. A.R. Lampis, Phys. Rev. C 38, 1961 (1988).

    ADS  Google Scholar 

  54. P. Sapienza, Phys. Rev. Lett. 73, 1769 (1994).

    ADS  Google Scholar 

  55. A. Badalá, Phys. Rev. Lett. 74, 4779 (1995).

    ADS  Google Scholar 

  56. H.W. Barz, Phys. Rev. C 53, R553 (1996).

  57. J.H.G. Van Pol, Phys. Rev. Lett. 76, 1425 (1996).

    ADS  Google Scholar 

  58. P. Piattelli, Phys. Lett. B 442, 48 (1998).

    ADS  Google Scholar 

  59. V.E. Viola, Phys. Rev. C 26, 178 (1982).

    ADS  Google Scholar 

  60. A. Schubert, Phys. Rev. Lett. 72, 1608 (1994).

    ADS  Google Scholar 

  61. F.M. Marqués, Phys. Lett. B 349, 30 (1995).

    ADS  Google Scholar 

  62. G. Martinez, Phys. Lett. B 349, 23 (1995).

    ADS  Google Scholar 

  63. D.G. D'Enterria, Phys. Rev. Lett. 87, 022701 (2001).

    ADS  Google Scholar 

  64. R. Alba, Nucl. Phys. A 654, 761c (1999).

    Google Scholar 

  65. R. Alba, Nucl. Phys. A 681, 339c (2001).

    ADS  Google Scholar 

  66. R. Alba, Nucl. Phys. A 749, 98c (2005).

    ADS  Google Scholar 

  67. R. Alba, arXiv:nucl-ex/0507028, 22-July-2005.

  68. D.G. D'Enterria, Phys. Lett. B 538, 27 (2002).

    ADS  Google Scholar 

  69. K.K. Gudima, Phys. Rev. Lett. 76, 2412 (1996).

    ADS  Google Scholar 

  70. J. Aichelin, G. Bertsch, Phys. Lett. B 138, 350 (1984).

    ADS  Google Scholar 

  71. R. Shyam, J. Knoll, Nucl. Phys. A 426, 606 (1984).

    ADS  Google Scholar 

  72. A. Bonasera, G.F. Bertsch, Phys. Lett. B 195, 521 (1987).

    ADS  Google Scholar 

  73. W. Bauer, Phys. Rev. C 40, 715 (1989).

    ADS  Google Scholar 

  74. A. Badalá, Phys. Rev. C 48, 2350 (1993).

    ADS  Google Scholar 

  75. W. Benenson, Phys. Rev. Lett. 43, 683 (1979).

    ADS  Google Scholar 

  76. G.R. Young, Phys. Rev. C 33, 742 (1986).

    ADS  Google Scholar 

  77. H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000).

    ADS  Google Scholar 

  78. A. Ono, Phys. Rev. Lett. 68, 2898 (1992).

    ADS  Google Scholar 

  79. M. Papa, T. Maruyama, A. Bonasera, Phys. Rev. C 64, 024612 (2001).

    ADS  Google Scholar 

  80. D. Lacroix D. Ph., Chomaz, Nucl. Phys. A 636, 85 (1998).

    ADS  Google Scholar 

  81. A. Bonasera, arXiv:nucl-th/0110068.

  82. T. Kodama, Phys. Rev. C 29, 2146 (1984).

    MathSciNet  ADS  Google Scholar 

  83. A. Bonasera, F. Gulminelli, Phys. Lett. B 275, 24 (1992).

    ADS  Google Scholar 

  84. P. Danielewicz, Q. Pan, Phys. Rev. C 46, 2002 (1992).

    ADS  Google Scholar 

  85. J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55, 2661 (1985)

    ADS  Google Scholar 

  86. A. Badalá, Phys. Rev. C 54, 2138 (1996).

    ADS  Google Scholar 

  87. A. Badalá, Phys. Rev. C 57, 166 (1998).

    ADS  Google Scholar 

  88. T.C. Awes, Phys. Lett. B 103, 417 (1981)

    ADS  Google Scholar 

  89. T.C. Awes, Phys. Rev. C 25, 2361 (1982).

    ADS  Google Scholar 

  90. G.D. Westfall, Phys. Lett. B 116, 118 (1982).

    ADS  Google Scholar 

  91. G.D. Westfall, Phys. Rev. C 29, 861 (1984).

    ADS  Google Scholar 

  92. B.V. Jacak, Phys. Rev. C 35, 1751 (1987).

    ADS  Google Scholar 

  93. T. Fukuda, Nucl. Phys. A 425, 548 (1984).

    ADS  Google Scholar 

  94. R. Alba, Phys. Lett. B 322, 38 (1994).

    ADS  Google Scholar 

  95. D. Santonocito, Phys. Rev. C 66, 044619 (2002).

    ADS  Google Scholar 

  96. R. Wada, Phys. Rev. C 39, 497 (1989).

    ADS  Google Scholar 

  97. B.E. Hasselquist, Phys. Rev. C 32, 145 (1985).

    ADS  Google Scholar 

  98. P. Pawlowski, Eur. Phys. J. A 9, 371 (2000) and references therein.

    ADS  Google Scholar 

  99. J.B. Natowitz, Phys. Rev. C 65, 034618 (2002).

    ADS  Google Scholar 

  100. E. Plagnol, Phys. Rev. C 39 (2000).

  101. H. Fuchs, K. Möhring, Rep. Prog. Phys. 57, 231 (1994).

    ADS  Google Scholar 

  102. Y. Larochelle, Phys. Rev. C 59, R565 (1999).

  103. D. Thieriault, Phys. Rev. C 71, 014610 (2005).

    ADS  Google Scholar 

  104. R. Ghetti, Nucl. Phys. A 674, 277 (2000).

    ADS  Google Scholar 

  105. B.V. Jacak, Phys. Rev. C 31, 704 (1985).

    ADS  Google Scholar 

  106. K. Hagel, Phys. Rev. C 62, 034607 (2000).

    ADS  Google Scholar 

  107. V. Avdeichikov, Nucl. Phys. A 736, 22 (2004).

    ADS  Google Scholar 

  108. P.M. Milazzo, Nucl. Phys. A 756, 39 (2005).

    ADS  Google Scholar 

  109. E. De Filippo, Phys. Rev. C 71, 044602 (2005) and reference therein.

    ADS  Google Scholar 

  110. J.F. Dempsey, Phys. Rev. C 54, 1710 (1996).

    ADS  Google Scholar 

  111. P.M. Milazzo, Phys. Lett. B 509, 204 (2001).

    ADS  Google Scholar 

  112. R. Ghetti, Phys. Rev. Lett. 87, 102701 (2001).

    ADS  Google Scholar 

  113. G. Verde, Phys. Rev. C 65, 054609 (2002).

    ADS  Google Scholar 

  114. P. Lautesse, Phys. Rev. C 71, 034602 (2005).

    ADS  Google Scholar 

  115. Rulin Sun, Phys. Rev. Lett. 84, 43 (2000).

    ADS  Google Scholar 

  116. J. Rizzo, Phys. Rev. C 72, 064609 (2005).

    ADS  Google Scholar 

  117. J. Peter, Phys. Lett. B 237, 187 (1990).

    ADS  Google Scholar 

  118. D. Prindle, Phys. Rev. C 48, 291 (1993).

    ADS  Google Scholar 

  119. T. Lefort, Nucl. Phys. A 662, 397 (2000).

    ADS  Google Scholar 

  120. C. Kuhrts, Phys. Rev. C 63, 034605 (2001).

    ADS  Google Scholar 

  121. E.A. Remler, Ann. Phys. 119, 326 (1979).

    ADS  Google Scholar 

  122. E.A. Remler, Phys. Rev. C 25, 2974 (1982).

    ADS  Google Scholar 

  123. M. Germain, Nucl. Phys. A 620, 81 (1997).

    ADS  Google Scholar 

  124. I. Bobeldijk, Phys. Lett. B 353, 32 (1995).

    ADS  Google Scholar 

  125. M. Germain, Phys. Lett. B 437, 19 (1998).

    ADS  Google Scholar 

  126. P. Sapienza, Nucl. Phys. A 734, 601 (2004).

    ADS  Google Scholar 

  127. P. Sapienza, LNS Activity Report 2001, p. 46 www.lns.infn.it.

  128. A.R. Wolf, Phys. Rev. Lett. 80, 5281 (1998).

    ADS  Google Scholar 

  129. A. Bonasera, Proceedings of the 10th Conference on Problems in Theoretical Nuclear Physics, Cortona 6-9 October 2004 (World Scientific, 2005) p. 171.

  130. D. Horn, Phys. Rev. Lett. 77, 2408 (1996).

    ADS  Google Scholar 

  131. The Physics Objectives SPIRAL 2 Project (2005) see www.ganil.fr.

  132. Bao An Li, Phys. Rev. C 67, 017601 (2003).

    ADS  Google Scholar 

  133. T. Gaitanos, Phys. Lett. B 595, 209 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bonasera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonasera, A., Coniglione, R. & Sapienza, P. High-energy probes. Eur. Phys. J. A 30, 47–64 (2006). https://doi.org/10.1140/epja/i2006-10107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10107-8

PACS.

Navigation