Skip to main content
Log in

Signatures of chiral dynamics in the nucleon to Delta transition

  • Hadron Physics
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Utilizing the methods of chiral effective field theory we present an analysis of the electromagnetic NΔ-transition current in the framework of the non-relativistic “small scale expansion” (SSE) to leading-one-loop order. We discuss the momentum dependence of the magnetic dipole, electric quadrupole and Coulomb quadrupole transition form factors up to a momentum transfer of Q2 < 0.3GeV^2. Particular emphasis is put on the identification of the role of chiral dynamics in this transition. Our analysis indicates that there is indeed non-trivial momentum dependence in the two quadrupole form factors at small Q2 < 0.15GeV^2 arising from long-distance pion physics, leading, for example, to negative radii in the (real part of the) quadrupole transition form factors. We compare our results with the EMR(Q2) and CMR(Q2) multipole ratios from pion-electroproduction experiments and find a remarkable agreement up to four-momentum transfer of Q2 ≈ 0.3GeV^2. Finally, we discuss the chiral extrapolation of the three transition form factors at Q2 = 0, identifying rapid changes in the (real part of the) quark mass dependence of the quadrupole transition moments for pion masses below 200MeV, which arise again from long-distance pion dynamics. Our findings indicate that dipole extrapolation methods currently used in lattice QCD analyses of baryon form factors are not applicable for the chiral extrapolation of NΔ quadrupole transition form factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Particle Data Group (S. Eidelman), Phys. Lett. B 592, 1 (2004).

    Article  ADS  Google Scholar 

  2. R. Beck, Phys. Rev. C 61, 035204 (2000).

    Article  ADS  Google Scholar 

  3. S. Stein, Phys. Rev. D 12, 1884 (1975).

    Article  ADS  Google Scholar 

  4. K. Bätzner, Phys. Lett. B 39, 575 (1972).

    Article  ADS  Google Scholar 

  5. W. Bartel, Phys. Lett. B 28, 148 (1968).

    Article  ADS  Google Scholar 

  6. R. Siddle, Nucl. Phys. B 35, 93 (1971)

    Article  ADS  Google Scholar 

  7. CLAS Collaboration (K. Joo), Phys. Rev. Lett. 88, 122001 (2002).

    Article  ADS  Google Scholar 

  8. OOPS Collaboration (N.F. Sparveris), Phys. Rev. Lett. 94, 022003 (2005).

    Article  ADS  Google Scholar 

  9. Th. Pospischil, Phys. Rev. Lett. 86, 2959 (2001) and D. Elsner, preprint [nucl-ex/0507014].

    Article  ADS  Google Scholar 

  10. A.M. Bernstein, Eur. Phys. J. A 17, 349 (2003).

    Article  ADS  Google Scholar 

  11. A. Wirzba, W. Weise, Phys. Lett. B 188, 6 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Sato, T.S.H. Lee, Phys. Rev. C 63, 055201 (2001)

    Article  ADS  Google Scholar 

  13. A.J. Buchmann, in Proceedings of Baryons 98, edited by B. Metsch (World Scientific, Singapore, 1999) [hep-ph/9909385].

  14. D.-H. Lu, A.W. Thomas, A.G. Williams, Phys. Rev. C 55, 3108 (1997).

    Article  ADS  Google Scholar 

  15. A. Silva, Nucl. Phys. A 675, 637 (2000).

    Article  ADS  Google Scholar 

  16. J. Gasser, M.E. Sainio, A. Svarc, Nucl. Phys. B 307, 779 (1988).

    Article  ADS  Google Scholar 

  17. E. Jenkins, A.V. Manohar, Phys. Lett. B 255, 558 (1991).

    Article  ADS  Google Scholar 

  18. V. Bernard, N. Kaiser, J. Kambor, U.-G. Meißner, Nucl. Phys. B 388, 315 (1992).

    Article  ADS  Google Scholar 

  19. M.N. Butler, M.J. Savage, R.P. Springer, Phys. Rev. D 49, 3459 (1994).

    Article  ADS  Google Scholar 

  20. T.R. Hemmert, B.R. Holstein, J. Kambor, J. Phys. G 24, 1831 (1998).

    Article  ADS  Google Scholar 

  21. G.C. Gellas, T.R. Hemmert, C.N. Ktorides, G.I. Poulis, Phys. Rev. D 60, 054022 (1999).

    Article  ADS  Google Scholar 

  22. S.S. Kamalov,, Phys. Rev. Lett. 83, 4494 (1999)

    Article  ADS  Google Scholar 

  23. V. Bernard, H.W. Fearing, T.R. Hemmert, U.-G. Meißner, Nucl. Phys. A 635, 121 (1998)

    Article  ADS  Google Scholar 

  24. H.F. Jones, M.D. Scadron, Ann. Phys. (N.Y.) 81, 1 (1973).

    Article  Google Scholar 

  25. W.W. Ash, Phys. Lett. B 24, 165 (1967).

    Article  ADS  Google Scholar 

  26. V. Pascalutsa, M. Vanderhaeghen, preprint [hep-ph/ 0508060].

  27. T.A. Gail, in preparation.

  28. V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).

    Article  ADS  Google Scholar 

  29. M. Göckeler, Proceedings of Science LAT2005 (2005) [hep-lat/0510061] p. 349

  30. T.R. Hemmert, W. Weise, Eur. Phys. J. A 15, 487 (2002).

    Article  ADS  Google Scholar 

  31. M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968).

    Article  ADS  Google Scholar 

  32. S.S. Kamalov, Phys. Rev. C 64, 032201 (2001).

    Article  ADS  Google Scholar 

  33. L. Tiator, D. Drechsel, S.S. Kamalov, S.N. Yang, Eur. Phys. J. A 17, 357 (2003).

    Article  ADS  Google Scholar 

  34. M. Göckeler, Phys. Rev. D 71, 034508 (2005).

    Article  ADS  Google Scholar 

  35. R.P. Hildebrandt, H.W. Griesshammer, T.R. Hemmert, B. Pasquini, Eur. Phys. J. A 20, 293 (2004).

    Article  ADS  Google Scholar 

  36. J. Bijnens, F. Cornet, Nucl. Phys. B 296, 557 (1988).

    Article  ADS  Google Scholar 

  37. J.F. Donoghue, B.R. Holstein, Y.C. Lin, Phys. Rev. D 37, 2423 (1988).

    Article  ADS  Google Scholar 

  38. B. Kubis, U.-G. Meißner, Nucl. Phys. A 679, 698 (2001).

    Article  ADS  Google Scholar 

  39. C. Alexandrou, Phys. Rev. Lett. 94, 021601 (2005).

    Article  ADS  Google Scholar 

  40. Lattice Hadron Collaboration (C. Alexandrou), J. Phys. Conf. Ser. 16, 174 (2005).

    Article  ADS  Google Scholar 

  41. T.R. Hemmert, M. Procura, W. Weise, Phys. Rev. D 68, 075009 (2003).

    Article  ADS  Google Scholar 

  42. A.M. Bernstein, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gail.

Additional information

A. Schäfer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gail, T.A., Hemmert, T.R. Signatures of chiral dynamics in the nucleon to Delta transition. Eur. Phys. J. A 28, 91–105 (2006). https://doi.org/10.1140/epja/i2006-10023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10023-y

PACS.

Navigation