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Abstract. We study the equation of state of strongly interacting matter at large densities and vanishing
temperature. The hadronic matter equation of state is computed in a relativistic mean-field model and
the quark matter equation of state is computed using a NJL-type model which takes into account the
possibility of formation of the gapless color flavor locked phase. We focus in particular on the possible
phase transition from hadronic matter to quark matter using both Maxwell and Gibbs constructions. We
finally discuss the relevance of the equation of state in the context of compact stars and we propose some
astrophysical signatures of the presence of quark matter in compact stars.

PACS. 26.60.+c Nuclear matter aspects of neutron stars – 25.75.Nq Quark deconfinement, quark-gluon
plasma production, and phase transitions

1 Introduction

The equation of state of strongly interacting matter at
densities below the saturation density of nuclear mat-
ter ρ0 = 0.16 fm−3 is relatively well known [1,2] due to
the large amount of experimental data on nuclear physics
available. At larger densities there are many uncertainties
due to the lack of experimental data; the saturation of
nuclear force makes, in fact, the compression of nuclear
matter at larger densities quite difficult. In ultra relativis-
tic heavy-ion collision experiments the baryon densities
can reach values of a few times ρ0 at temperatures of
∼ 150–200MeV. The only “natural laboratories” in which
matter is compressed to densities up to ten times ρ0 are
compact stars. For these reasons, the study of these stellar
objects can shed light on the equation of state of strongly
interacting matter at extreme conditions. In particular, it
has been extensively studied the possibility of formation,
in the core of a compact star, of “exotic” particles as the
hyperons or meson condensates of pions or kaons, or fi-
nally, it has been suggested that a phase transition from
hadronic matter to quark matter, in which the quarks
composing the baryons are deconfined, can occur. Con-
cerning quark matter, in particular, recent studies on the
QCD phase diagram at finite densities and temperatures
have revealed the existence of a rich structure of the phase
diagram with several possible phases in which a color su-
perconducting state can be formed [3]. The fundamental
phenomenological problem in the study of compact stars
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is to investigate how the measurable properties of these
stellar objects as masses, radii, thermal evolution, periods
of rotation etc., depend on the equation of state of mat-
ter. In principle, it is therefore possible to put constraints
on the theory of the QCD phase diagram from astrophys-
ical observations and measurements on compact stars. In
this paper we will first analyze the equation of state of
strongly interacting matter focusing in particular on the
phase transition from hadronic matter to quark matter,
eventually in its color superconducting phase and we will
propose some signatures of the presence of quark matter
in a compact star.

2 Equation of state of compact stars matter

2.1 Hadronic matter

Concerning hadronic matter, we use the relativistic field-
theoretical approach to the nuclear equation of state [4].
In this theory the interactions between hadrons are de-
scribed by the exchange of three mesons, the scalar field
σ, the vector field ω and the isovector field ρ. The La-
grangian of the model has five free parameters which are
fixed imposing that the model reproduces five measured
quantities of the nuclear matter, i.e. the saturation den-
sity, the binding energy per nucleon, the incompressibility,
the effective mass of nucleons and the symmetry energy.
This model can easily incorporate all the particles of the
baryon octet [5,6] and in particular baryons containing



290 The European Physical Journal A

0.2 0.4 0.6 0.8 1 1.2 1.4
ΡB@fm-3D0.001

0.005
0.01

0.05
0.1

0.5
1

Yi GM3 - Hadronic Matter

n

p

e_

Μ_ S_ L

So S+

X-

Fig. 1. Particle abundances as functions of the total baryon
density.

strangeness, the hyperons. At T = 0, in the mean-field
approximation, the thermodynamic potential Ω per unit
volume can be written as
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where the
∑

B runs over the eight baryon species, E?
B(k) =

√

k2 +M?
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2 and the baryon effective masses are M ?
B =

MB − gσσ. The effective chemical potentials νB are given
in terms of the thermodynamic chemical potentials µB
and of the vector meson fields as follows:

νB = µB − gωω − t3Bgρρ , (2)

where t3B is the isospin 3-component for baryon B and
the relation to the Fermi momentum kFB is provided by

νB =
√

k2

FB +M?
B

2. The isoscalar and isovector meson

fields (σ, ω and ρ) are obtained as a solution of the field
equations in the mean-field approximation [6].

The equation of state of compact star matter must
satisfy the beta equilibrium and charge neutrality condi-
tions. The former allows to express the chemical potentials
of all the particles as linear combinations of the baryonic
and electric charge chemical potential (µB and µC):

µi = biµB + ciµC , (3)

where bi is the baryon number of the particle and ci is its
electric charge in unit of the electron charge.

The condition of charge neutrality, taking into account
also the densities of leptons, reads

0 = ρp + ρΣ+ − ρΣ− − ρΞ− − ρe − ρµ, (4)

where ρi indicate the number densities of the various
particles. With all these conditions we can calculate the
hadronic-matter equation of state as a function of only
one chemical potential, the baryon chemical potential µB .
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Fig. 2. Pressure as a function of baryon density for nucleonic
matter (NM) and hadronic matter (HM).

In fig. 1 the particle abundances as functions of the
total baryon density are displayed. Notice in particular
how the density of neutrons start to decrease as neutral
hyperons start to form. In fig. 2 the pressures as a function
of baryon density for nuclear matter and hadronic matter
are compared. As it can be seen the presence of hyperons
makes the equation of state softer.

The model described so far will be used for densities of
matter of the order of or larger than the saturation density
ρ0. For lower densities we will use the Negele-Vautherin
and the Baym-Pethick-Sutherland equations of state [1,2].

2.2 Quark matter

In high-density hadronic matter, baryons are forced to
stay so close to one another that they would overlap, the
constituent quarks are shared by neighboring baryons and
should eventually become mobile over a distance larger
than the typical size of one baryon. This means that
quarks become deconfined and that at large densities they
are the real degrees of freedom of strongly interacting mat-
ter instead of baryons. The process of deconfinement and
the equation of state of quark matter can in principle be
described by QCD. However in the energy scale involved
in a compact star, QCD is non-perturbative and therefore
simple phenomenological models are usually adopted to
describe quark matter as the MIT bag model [7], the NJL
model [8] or the Color Dielectric Model [9].

2.2.1 Unpaired quark matter

The simplest model to describe quark matter is the MIT
bag model. In this model, quark matter is described as
a gas of free quarks with massless up and down quarks
and strange quarks having a “current mass” variable be-
tween 80–200MeV. All the “non-perturbative physics of
QCD” is simulated by the bag constant B which repre-
sents the pressure of the vacuum. The thermodynamic
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potential reads
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and B is the bag constant. Beta stability is included in
eqs. (6-9) and charge neutrality is imposed by the equation
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As the hadronic equation of state, the unpaired quark
matter equation of state has only one independent variable
which can be chosen to be the baryon chemical potential
µB .

2.2.2 Color superconducting quark matter

Quark matter is actually a gas of interacting fermions,
the interaction being mediated by the exchange of glu-
ons as described by QCD. Considering just the one-gluon
exchange potential, there is a channel of interaction be-
tween quarks which is attractive and which corresponds
with the two incoming quarks to be in the 3̄ channel. From
the results of the Bardeen-Cooper-Schrieffer theory of su-
perconductivity, it is known that if in a Fermi gas there
is an arbitrary weak attractive potential, the Fermi sur-
face becomes unstable with respect to the formation of a
condensate of Cooper pairs. Therefore, as it happens in
metals at low temperature, also in quark matter an insta-
bility with respect to the formation of Cooper pairs be-
tween quarks does develop, originating the phenomenon of
the so-called color superconductivity. The order parameter
characterizing this phase is the value of the diquark con-
densate or, in other words, the color superconducting gap
∆. The possibility of the existence of this phase of QCD
was first shown at asymptotic densities, i.e. in a pertur-
bative regime [10,11]. The same results have been extrap-
olated to lower densities using models of quark matter as
for example the NJL model [12]. Both schemes leads to a
value of ∆ ∼ 100 MeV. Such a high value indicates that,
at variance with the superconductivity in metals, color su-
perconductivity is very robust because in the only place of
the universe in which it can appear, the core of compact
stars, the temperature is very low (few keV). This obser-
vation has encouraged further studies in this direction, see
ref. [3] for an exhaustive review.

It is not yet understood which type of color supercon-
ducting phase can appear in a compact star. It is widely
accepted that the Color-Flavor Locking phase (CFL) is
the real ground state of QCD at asymptotically large den-
sities. In this phase, up, down, and strange quarks are
present and all of them are involved in the formation of
Cooper pairs. As a consequence, all the quarks have a
common Fermi level and therefore charge neutrality and
beta stability are automatically satisfied without the pres-
ence of leptons [13]. The CFL phase can form only if the
mass of the strange quark ms is small with respect to
the superconducting gap and the chemical potential. All
these considerations are valid at high density. At lower
densities, there is still uncertainty about the presence of
CFL phase and in particular about the transition from the
CFL phase to the hadronic phase. At intermediate values
of ms, it is in general difficult to involve strange quarks
in BCS pairing due to their Fermi momentum, which is
lower than that of up and down quarks. Recently, it has
been shown that the CFL phase can form only if the ra-
tio m2

s/µ . 2∆CFL [14]. At larger values of m2

s/µ, but
not too large values of ms, the most energetically favored
phase is the so-called gapless CFL (gCFL) phase instead
of the 2SC phase or unpaired quark matter [15,16,17]. The
gCFL phase has the same symmetries as the CFL phase
but there are two gapless quark modes and a nonzero elec-
tron density and therefore it can have very different trans-
port properties respect to the CFL phase.

To compute the equation of state of the (g)CFL phase
we adopt the NJL-like formalism of refs. [14,15,16] in
which the thermodynamic potential per unit volume can
be written as

Ω = −
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where ∆1, ∆2, ∆3 are the superconducting gaps charac-
terizing the gCFL phase (which reduce to a single gap in
the CFL phase), G is the strength of the diquark coupling,
εj(p) are the dispersion relations of quarks as in ref. [15]
and µe is the electron chemical potential. Following the
approximations used in refs. [14,15], the effect of ms is in-
troduced as a shift −m2

s/2µ in the chemical potential for
the strange quarks and the contributions of antiparticles is
neglected. In eq. (11) we have introduced the quasiparticle
probabilities

ρj(p) =
1

2

(

1−
ε̃j(p)

εj(p)

)

, (12)

where ε̃j(p) are the dispersion relations with vanishing
gaps. To assure the convergence of the integral in eq. (11),
a form factor f = (Λ2/(p2 + Λ2))2, which multiplies the
gaps, is introduced in the dispersion relations εj(p). The
form factor was fixed to mimic the effects of the asymp-
totic freedom of QCD [12] and the parameter Λ was fixed
at a value of 800MeV.
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Fig. 3. Gap parameters as a function of the quark chemical
potential for two different values of diquark coupling G1 and G2

and for a fixed value of the strange quark mass ms = 150MeV.
The larger the value of G, the larger the window of the chemical
potential in which the CFL phase occurs.

As in the other equations of state discussed so far we
must impose the chemical equilibrium between the dif-
ferent quark species. The chemical equilibrium conditions
(which also include β-stability) allow to express the chem-
ical potential µcf (c and f are the indexes of color and
flavor, respectively) of each quark as a function of the
quark (baryonic) chemical potential µ, the electron chem-
ical potential µe and the two chemical potentials, µ3 and
µ8, associated to the U(1) × U(1) subgroup of the color
gauge group (see ref. [15] for details). The color and elec-
tric charge neutrality are imposed by the following three
equations:

∂Ω

µ3

= 0,
∂Ω

µ8

= 0,
∂Ω

µe
= 0 . (13)

Moreover, the thermodynamic potential must be mini-
mized with respect to the gap parameters and therefore
we have to impose the three additional conditions:

∂Ω

∆1

= 0,
∂Ω

∆2

= 0,
∂Ω

∆3

= 0 . (14)

The above equations allow us to compute the thermody-
namic potential and all the thermodynamic variables as
a function of the quark chemical potential only. In fig. 3
the gap parameters are displayed as functions of the quark
chemical potential µ for two different values of the diquark
coupling. G1 and G2 correspond, respectively, to values of
∆CFL ∼ 40 and ∆CFL ∼ 100MeV at µ = 500MeV and
ms = 150MeV. It is interesting to observe that the win-
dow in which the gCFL phase appears depends noticeably
on the value of the diquark coupling and, in particular, it
decreases with G (see fig. 3). This confirms the general ar-
gument for which the transition from gCFL to CFL occurs
when m2

s/µ ' 2∆CFL.

2.3 Phase transitions

Although there is no theoretical evidence, it is believed
that the hadronic matter-quark matter phase transition is
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Fig. 4. Particle abundances as functions of the total baryon
density. The upper panel corresponds to the case of the
hyperon-quark mixed phase and the lower panel to the nucleon-
quark mixed phase.

a first order phase transition. Maxwell construction is the
usual tool to connect two phases: the phase transition oc-
curs at constant pressure with a discontinuity of the num-
ber density. In the context of compact stars, it has been
shown that the two phases can be connected by an inter-
mediate window of mixed phase [6]. In the calculation of
the possible mixed phases, hadronic-unpaired quark phase
or hadronic-CFL phase, we use the Gibbs construction in
which the equations of mechanical, thermal and chemi-
cal equilibrium are simultaneously imposed. The conser-
vation of the baryon number and the electrical neutrality
are imposed as global conditions. Due to the existence of
two conserved charges in the matter of a compact star the
pressure need not to be constant in the mixed phase which
is crucial for the stability of the star.

In fig. 4 the abundances of various particles as func-
tions of the baryon density are shown for two different
equations of state. In the upper panel, we show a mixed
phase of hadronic matter and CFL quark matter where
the superconducting gap is fixed at a value of 80MeV. In
the lower panel, we show a mixed phase of nuclear matter
and unpaired quark matter.

The hypothesis of a direct transition from hadronic
matter to the CFL phase is too simple at the light of
recent results on the QCD phase diagram. Actually, a sce-
nario in which an intermediate window of unpaired quark



A. Lavagno and G. Pagliara: Equation of state of strongly interacting matter in compact stars 293

0.2 0.4 0.6 0.8 1
ΡB@fm-3D

0.2

0.4

0.6

0.8

1

P@fm-4D

G2

G1

GM3
NM HM

B1�4= 170 MeV
ms=150 MeV

Fig. 5. Pressure as a function of baryon density for the sce-
nario in which a first phase transition from hadronic matter to
quark matter occurs via a mixed phase and then a second phase
transition (here computed using the Maxwell construction) oc-
curs from this mixed phase to the gCFL phase. The dot-dashed
line is related to the hadron-unpaired quark mixed phase. The
thin solid lines represent the phase transitions from the mixed
phase to the gCFL phase for the two diquark couplings. Notice
that in the case of G1 a gCFL phase window is still present.

matter or 2SC quark matter is more plausible. In this case
the equation of state of strongly interacting matter has
two first-order phase transitions: a first one from hadronic
matter to unpaired quark matter (or 2SC) and a second
one from unpaired quark matter (or 2SC) to the (g)CFL
phase (see refs. [18,19,20]). This scenario is shown in fig. 5
where the pressure as a function of the baryon density is
shown for different equations of state. The first phase tran-
sition occurs between nuclear matter and unpaired quark
matter (thick and dot-dashed lines) and the second phase
transition (here computed using Maxwell construction for
simplicity) occurs between the nuclear-quark mixed phase
and the (g)CFL phase (dot-dashed and thin solid lines).
The couplings G1 and G2 are the same of fig. 3 and the dot
on the curve labeled with G1 represents the onset of the
CFL phase. Notice that for large diquark coupling (G2)
the transition from the mixed phase to the (g)CFL phase
occurs above the onset of the gCFL-CFL phase and for
small diquark coupling (G1) a window of the gCFL phase
is instead present. Concerning the hyperons, within this
choice of parameters the transition from hadronic matter
to gCFL quark matter occurs before reaching the thresh-
old of the formation of hyperons. If we use larger values of
the bag constant, the first critical density may be larger
than the threshold of the formation of hyperons. In that
case, however, the phase transition would involve the CFL
phase directly.

3 Signatures of quark matter in compact stars

Several signatures of the presence of quark matter in com-
pact stars have been proposed in the literature. The most
extensively discussed is the mass-radius relation of com-
pact stars which should allow the existence of very com-
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Fig. 6. The binding energies for neutron stars (NS), hadronic
stars (HS), hybrid stars HyS (without CFL phase) and CFL
hybrid stars (CFL-HyS) are shown as functions of the gravita-
tional mass. The dashed line are the lines of constant baryonic
mass.

pact stellar objects (radius less than 10 km) if quark mat-
ter is present [21]. Other interesting ways to study the
composition of a compact star come from the analysis of
the cooling of the stars [22] or the stability with respect
to the r-modes [23]. In both cases, the weak-decay chan-
nels involving the strange quark can strongly affect the
transport properties of the matter of the compact star.
Recently, it has been shown that also from gravitational
wave signals from isolated compact stars, we can obtain
important informations on the structure and composition
of a star [24,25]. Finally, the formation of quark matter
in a compact star can have a role also in the most vio-
lent explosive phenomena of the Universe, i.e. supernovae
and gamma-ray-bursts [26]. Here, as an example, we will
discuss only the effect of the formation of quark matter
during a supernova explosion.

Let us first introduce the expression of the baryonic
mass of a star:

MB = mn

∫ R

0

dr
4πr2

(1− 2m(r)/r)1/2
ρB(r), (15)

wheremn is the neutron mass,m(r) is the mass in a sphere
of radius r, ρB is the total baryon density. The energy re-
leased in a supernova explosion is the difference between
the gravitational mass of the core of the progenitor starMc

and the gravitational mass of the final compact star. The
energy released corresponds also to the binding energy of
the star. For practical purposes we can assume that Mc ∼
MB . Therefore, the energy released can be approximated
as the difference MB −M . Almost all of this energy is re-
leased in neutrinos. In fig. 6, we display the binding energy
for neutron stars, hadronic stars and hybrid stars (without
CFL) and CFL-hybrid stars, as functions of the gravita-
tional mass. For a fixed value of the baryonic mass, which
as already stated roughly corresponds to the mass of the
collapsing core, we can calculate the energy released in the
collapse. Typical values of this energy are of the order of
1053 ergs. It is evident from fig. 6 that, for a fixed baryonic
mass (dashed lines), the binding energy of a CFL-hybrid
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star can be a few times that of a neutron star and therefore
the corresponding energy released is larger. Figure 6, sug-
gests, moreover, that, if in the future new supernova events
will be detected, it will be possible from the signal of the
emitted neutrinos to obtain information on the equation
of state of the matter in compact stars. For instance, if
the energy released in neutrinos is of the order of or larger
than ∼ 4 × 1053 erg, we can exclude hybrid or hadronic
stars. A similar energy may be released in the formation
of a neutron star but this would require a baryon mass for
the core ∼ 2M¯ what seems difficult in the light of recent
supernovae simulations [27]. In this case only a CFL (CFL-
hybrid) star can be a plausible candidate. This conclusion
agrees with the well-known results that the stars contain-
ing quark matter are more bounded that hadronic stars.

4 Conclusions

In this paper, we studied the equation of state of strongly
interacting matter at large densities and vanishing tem-
perature. We analyzed in particular the possibility of a
phase transition from hadronic matter and quark matter.
We included in our calculation the recent results on the
QCD phase diagram indicating two first-order phase tran-
sitions: a first one from hadronic matter to unpaired quark
matter and a second one from unpaired quark matter to
the color flavor locked phase. These theoretical results can
be tested studying compact stars which are the only places
in the universe in which the density of matter can reach
values up to ten times the nuclear matter saturation den-
sity. We listed the different signatures of the presence of
quark matter in a compact star and we discussed, in par-
ticular, a scenario in which during a supernova explosion
deconfinement of quarks is realized in the newly born com-
pact star.
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