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Abstract. We study the effect of screening by bound electrons in low energy nuclear reactions. We use
molecular dynamics to simulate the reactions involving many electrons: D+d, D+D, 3He+d, 3He+D, 6Li+d,
6Li+D, 7Li+p, 7Li+H. Quantum effects corresponding to the Pauli and Heisenberg principles are enforced
by constraints in terms of the phase space occupancy. In addition to the well-known adiabatic and sudden
limits, we propose a new “dissipative limit” which is expected to be important not only at high energies
but in the extremely low energy region. The dissipative limit is associated with the chaotic behavior of
the electronic motion. It affects also the magnitude of the enhancement factor. We discuss also numerical
experiments using polarized targets. The derived enhancement factors in our simulation are in agreement
with those extracted within the R-matrix approach.

PACS. 25.45.-z 2H-induced reactions – 34.10.+x General theories and models of atomic and molecular
collisions and interactions (including statistical theories, transition state, stochastic and trajectory models,
etc.)

1 Introduction

The relation between the tunneling process and dynam-
ical chaos has been discussed with great interests in re-
cent years [1,2]. Though the tunneling is a completely
quantum-mechanical phenomenon, it is influenced by clas-
sical chaos. In the sense that the chaos causes the fluctua-
tion of the classical action which essentially determines the
tunneling probability. We study the phenomenon by ex-
amining the screening effect by bound electrons in the low
energy fusion reaction. In the low energy region the exper-
imental cross-sections with gas targets show an increasing
enhancement with decreasing bombarding energy with re-
spect to the values obtained by extrapolating from the
data at high energies [3]. Many studies attempted to at-
tribute the enhancement of the reaction rate to the screen-
ing effects by bound target electrons. In this context one
often estimates the screening potential as a constant de-
crease of the barrier height in the tunneling region through
a fit to the data. A puzzle has been that the screening po-
tential obtained by this procedure exceeds the value of the
so-called adiabatic limit, which is given by the difference
of the binding energies of the united atoms and of the
target atom and it is theoretically thought to provide the
maximum screening potential [4]. For several years, the re-
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determination of the bare cross-sections has been proposed
theoretically [5] and experimentally [6], using the Tro-
jan Horse method [7,8,9]. The comparison between newly
obtained bare cross-sections, i.e., astrophysical S-factors,
and the cross-sections by the direct measurements gives
a variety of values for the screening potential. These val-
ues are often smaller than the sudden limit or larger than
the adiabatic limit. Theoretical studies performed using
the time-dependent Hartree-Fock (TDHF) scheme [10,11]
suggest that the screening potential is between the sudden
and the adiabatic limits.

One of the aims of this paper is to try to assess the
effect of the screening quantitatively. Up to now, the dy-
namical effects of bound electrons have been studied only
in some limited cases with a few bound electrons (the
D+d with atomic target [10,11] and molecular D2 tar-
get [12], the 3He+d [10]) with the TDHF method. We in-
vestigate here the dynamical effects, including the tunnel-
ing region, for other systems with many bound electrons:
D+D, 3He+D, observing the effect of the electron capture
of projectile. We consider also some reactions including Li
isotopes: 6Li+d, 6Li+D, 7Li+p and 7Li+H.

To simulate the effects of many electrons, we use the
constrained molecular dynamics (CoMD) model [2,13,14].
At very low energies fluctuations are anticipated to play a
substantial role. Such fluctuations are beyond the TDHF
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scheme. Not only are TDHF calculations, by construc-
tion, cylindrically symmetric around the beam axis. Such
a limitation is not necessarily true in nature and the mean
field dynamics could be not correct especially in the pres-
ence of large fluctuations. Molecular dynamics contains
all possible correlations and fluctuations due to the initial
conditions (events). For the purpose of treating quantum-
mechanical systems like target atoms and molecules, we
use classical equations of motion with constraints to sat-
isfy the Heisenberg uncertainty principle and the Pauli
exclusion principle for each event [13]. In extending the
study to the lower incident energies, we would like to stress
the connection between the motion of bound electrons and
chaos. In fact, depending on the dynamics, the behavior of
the electron(s) is unstable and influences the relative mo-
tion of the projectile and the target. The feature is caused
by the non-integrability of the N -body system (N ≥ 3)
and it is well known that the tunneling probability can
be modified by the existence of chaotic environment. We
discuss the enhancement factor of the laboratory cross-
section in connection with the integrability of the system
by looking the inter-nuclear and electronic oscillational
motion. More specifically we analyze the frequency shift
of the target electron due to the projectile and the small
oscillational motion induced by the electron to the rel-
ative motion between the target and the projectile. We
show that the increase of chaoticity in the electron mo-
tion decreases the fusion probability.

The paper is organized as follows. In sect. 2 we intro-
duce the enhancement factor fe and describe the essence
of the constrained molecular dynamics approach briefly. In
sect. 3 we apply it to assess the effect of the bound elec-
trons during the nuclear reactions. We discuss also the
relation between the amplitudes of the inter-nuclear oscil-
lational motion and the enhancement factor. We summa-
rize the paper in sect. 4.

2 Formalism

2.1 Enhancement factor

We denote the reaction cross-section at incident energy
in the center of mass E by σ(E) and the cross-section
obtained in the absence of electrons by σ0(E). The en-
hancement factor fe is defined as

fe ≡
σ(E)

σ0(E)
. (1)

If the effect of the electrons is well represented by the
constant shift Ue of the potential barrier, following [15,
10], (Ue ¿ E):

fe ∼ exp

[

πη(E)
Ue
E

]

, (2)

where η(E) is the Sommerfeld parameter [16].

2.2 Constrained molecular dynamics

We estimate the enhancement factor fe numerically using
molecular dynamics approach:

dri
dt

=
pic

2

Ei
,

dpi
dt

= −∇rU(ri), (3)

where (ri,pi) are the position, momentum of the particle

i at time t. Ei =
√

p2
i c

2 +m2
i c

4, U(ri) and mi are its en-
ergy, Coulomb potential and mass, respectively. We set the
starting point of the reaction at 10 Å inter-nuclear separa-
tion. In eqs. (3) we do not take into account the quantum
effect of Pauli exclusion principle and Heisenberg princi-
ple. In order to take the feature of the Pauli blocking into
account in this framework, we use the Lagrange multiplier
method for constraints and modify the classical equations
of motion (3).

Our constraint which corresponds to the Pauli block-
ing is f̄i ≤ 1 in terms of phase space density; note that
the phase space density can be directly related to the dis-
tance of two particles, i.e., rijpij , in the phase space. Here
rij = |ri−rj | and pij = |pi−pj |. The relation f̄i ≤ 1 is ful-

filled, if rijpij ≥ ξP h̄δSi,Sj
, where ξP = 2π(3/4π)

2/3. i, j
refer only to electrons and Si, Sj(= ±1/2) are their spin
projection. For the Heisenberg principle rijpij ≥ ξH h̄,
where ξH = 1, i and j refer not only to electrons but
also to the nucleus. ξH is determined to reproduce the
correct energy of hydrogenic atoms. Obviously the condi-
tions rijpij = ξH(P )h̄ must be fulfilled in the ground-state
configuration rather than rijpij > ξH(P )h̄.

Using these constraints, the Lagrangian of the system
can be written down as

L =
∑

i

p2
i c

2

Ei
−

∑

i,j(6=i)

U(rij) +
∑

i,j(6=i)

λHi

(rijpij

h̄
− 1

)

+
∑

i,j(6=i)

λPi

(

rijpij

ξP h̄
δSi,Sj

− 1

)

, (4)

where λPi and λHi are Lagrange multipliers. The varia-
tional calculus leads to

dri
dt

=
pic

2

Ei
+
1

h̄

∑

j(6=i)

(

λHi
ξH

+
λPi
ξP

δSi,Sj

)

rij
∂pij
∂pi

, (5)

dpi
dt

=−∇rU(ri)−
1

h̄

∑

j(6=i)

(

λHi
ξH
+

λPi
ξP

δSi,Sj

)

pij
∂rij
∂ri

. (6)

In order to obtain the atomic ground-state configuration,
we perform the time integration of eqs. (5) and (6). The
value of λHi and λPi are determined depending on the mag-
nitude of rijpij . If rijpij is (smaller) larger than ξH(P )h̄,
λ has positive (negative) sign. Thus we change the phase
space occupancy of the system. The constraints restrict
us to variations ∆L = 0 that keep the constraints always
true [14]. In this way we obtain many initial conditions
which occupy different points in the phase space micro-
scopically.
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In order to treat the tunneling process, we define the
collective coordinates Rcoll and the collective momentum
Pcoll as

Rcoll ≡ rP − rT , Pcoll ≡ pP − pT , (7)

where rT , rP (pT ,pP ) are the coordinates (momenta) of
the target and the projectile nuclei, respectively. When
the collective momentum becomes zero, we switch on the
collective force, which is determined by Fcoll

P ≡ Ṗcoll and

Fcoll
T ≡ −Ṗcoll, to enter into imaginary time [17]. We fol-
low the time evolution in the tunneling region using the
equations

dr=T (P )

dτ
=

p=T (P )

ET (P )
,

dp=T (P )

dτ
= −∇rU(r

=
T (P ))− 2F

coll
T (P ),

(8)
where τ is used for imaginary time to be distinguished
from real time t. r=T (P ) and p=T (P ) are position and mo-

mentum of the target (the projectile) during the tunnel-
ing process, respectively. Adding the collective force cor-
responds to inverting the potential barrier which becomes
attractive in the imaginary times. The penetrability of the
barrier is given by [17]

Π(E) = (1 + exp (2A(E)/h̄))
−1

, (9)

where the action integral A(E) is

A(E) =

∫ ra

rb

Pcoll dRcoll, (10)

ra and rb are the classical turning points. The internal
classical turning point rb is determined using the sum of
the radii of the target and projectile nuclei. Similarly from
the simulation without electron, we obtain the penetrabil-
ity of the bare Coulomb barrier Π0(E).

Since nuclear reactions occur with small impact pa-
rameters on the atomic scale, we consider only head-on
collisions. The enhancement factor is thus given by eq. (1),

fe = Π(E)/Π0(E) (11)

for each event in our simulation. Thus we have an ensemble
of fe values at each incident energy.

3 Application to the electron screening

problem

3.1 D+d and D+D reactions

Figure 1 shows the incident energy dependence of the en-
hancement factor for the reactions D+d and D+D, where
the systems involve 1 and 2 electrons, respectively. The
open and closed squares show the average enhancement
factors f̄e over events for the reactions D+d and D+D,

respectively. The variances Σ =
√

f̄2
e − (f̄e)

2 are shown

with error bars. The dotted and dash-dotted curves show
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Fig. 1. Enhancement factor as a function of incident center-
of-mass energy for the reactions D+d and D+D. Error-bars
represent the variances obtained from the events generated for
each beam energy.

the enhancement factors in the adiabatic limit f
(AD)
e for

an atomic deuterium target. For the reaction D+d f
(AD)
e is

obtained by assuming equally weighted linear combination
of the lowest-energy gerade and ungerade wave function
for the electron, reflecting the symmetry in the D+d, i.e.,

f (AD)
e =

1

2

(

eπη(E)
U

(g)
e
E + eπη(E)

U
(u)
e
E

)

, (12)

where U
(g)
e = 40.7 eV and U

(u)
e = 0.0 eV [11,10]. If we take

into account the electron capture of the projectile, i.e., in
the case of D+D, the enhancement factor in the adiabatic
limit is

f (AD)
e =

1

4
eπη(E)

U
(g.s.)
e

E +
3

4
eπη(E)

U
(1es)
e
E , (13)

where U
(g.s.)
e = 51.7 eV and U

(1es)
e = 31.9 eV [18]. The

solid curve and dashed curve show the enhancement fac-
tors in the dissipative limit f

(DL)
e for the reactions D+d

and D+D, respectively. Notice how the calculated en-
hancement factor with their variances nicely ends up be-
tween the adiabatic and the dissipative limits. We per-
formed also a fit of our data using eq. (2) including the
very low energy region and obtained Ue = 15.9 ± 2.0 eV
for D+d case and Ue = 21.6± 0.3 eV for D+D.

Now we look at the oscillational motions of the parti-
cle’s coordinates as the projection on the z-axis (the re-
action axis). We denote the z-component of rT , rP and
re as zT , zP and ze, respectively. Practically, we examine
the oscillational motion of the electron around the tar-
get, zTe = ze − zT , and the oscillational motion of the
inter-nuclear motion, i.e., the motion between the target
and the projectile, zs = zT + zP , which essentially would
be zero due to the symmetry of the system in the ab-
sence of the perturbation. In fig. 2 these two values are
shown for 2 events, which have the enhancement factor
fe = 170.8 (ev. A), and fe = 6.5 (ev. B), at the inci-
dent energy Ecm = 0.15 keV. The panels show zs, zTe
as a function of time. The asterisks indicate the time at
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Fig. 2. The oscillational motion of the electron around the target (lower panels) and the inter-nuclear motion (upper panels)
as a function of time, in atomic unit, for two events, with large fe(ev. A) and small fe (ev. B), for the D+d reaction at the
incident energy 0.15 keV. The inter-nuclear separation is 10 Å at t = 0.
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Fig. 3. Incident energy dependence of the enhancement factor
for P⊥ and P‖ targets.

which the system reaches the classical turning point. It is
clear that in the case of event B the orbit of the electron is
much distorted from the unperturbed one than in event A.
Characteristics of zs are that 1) its value often becomes
zero, as is expected in the unperturbed system, and 2) the
component of the deviation from zero shows a periodical
behavior. It is remarkable that the amplitude of the de-
viation becomes quite large at some points in the case of
event B which shows the small enhancement factor. Note
that in event B one observes clear beats, i.e., resonances.
Thus for two events, with the same macroscopic initial
conditions, we have a completely different outcome, which
is a definite proof of chaos in our 3-body system. We can
understand these results in first approximation by consid-
ering the motion of the ions to be much slower than the
rapidly oscillating motion of the electrons [2]. From fig. 2
we can deduce the following important fact. If the motion
of the electron is initially in the plane perpendicular to the
reaction axis, the enhancement factor is large, event A (no-
tice |zTe| ¿ RB , i.e., the Bohr radius, at t ∼ 0). On the

other hand, if there is a substantial projection of the elec-
tron motion, as in event B (the amplitude of |zTe| ∼ RB

at t ∼ 0), on the reaction axis the enhancement factor is
relatively small because of the increase of chaoticity. The
fact suggests that if one performs experiments at very low
bombarding energies with polarized targets, the enhance-
ment factor can be controlled by changing the polarization.
The largest enhancement would be gained with targets po-
larized perpendicularly to the beam axis.

In order to test this estimation, we prepared ensem-
bles of target atoms which are polarized perpendicular
(P⊥) and parallel (P‖) to the beam axis, numerically. In
fig. 3 we show the incident energy dependence of the av-
erage enhancement factor for the P⊥ and P‖ targets with
pluses and crosses, particularly in the low energy region.
The enhancement factors from the P⊥ targets are always
larger than that from the P‖ targets. In contrast to the av-
erage enhancement from the P⊥ targets, which increases
monotonically as the incident energy becomes smaller, the
average enhancement from the P‖ targets fluctuates. It has
also large variances at low energies. A remarkable thing
is that with the parallel targets there are many events
in which the enhancement factor becomes less than 1. It
means that in this case the bound electron gives the effect
of hindrance to the tunneling probability.

3.2 3He+d and 3He+D reactions

An excess of the screening potential was reported for the
reactions 3He+d with atomic gas 3He target, and D2+

3He
with deuterium molecular gas target, for the first time in
ref. [3]. Since then various experiments have been per-
formed for these reactions. The incident energy covers
from 5 keV to 50 keV for 3He+d. Though once the problem
of the discrepancy between experimental data and theo-
retical prediction seemed to be solved by considering the
correct energy loss data [19], recent measurements using
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Fig. 4. Enhancement factor as a function of incident center-
of-mass energy for the reactions 3He+d and 3He+D.

measured energy loss data [20] report larger screening po-
tentials than in the adiabatic limit for both reactions.

The electron capture by the projectile plays a minor
role in the case of 3He+d, since electrons are more bound
in helium targets. However, the recent measurement by
Aliotta et al. was performed using molecular D+

2 and D
+
3

targets [20]. Thus we assess the contribution from the re-
action 3He+D, as well.

The enhancement factor in the adiabatic limit gives
Ue = 119 eV for 3He+d and Ue = 110 eV for 3He+D, re-
spectively. These are shown in fig. 4 with the solid curve
for 3He+d and with the dashed curve for 3He+D. The
comparison of these two adiabatic limits shows that the
electron capture of projectile would give a hindrance com-
pared with the case in the absence of the capture. Mean-
while the latest analysis of the experimental data using
R-matrix two level fit [5] suggests the screening poten-
tial Ue = 60 eV (the corresponding enhancement factor
is shown with the dotted curve). The comparison be-
tween direct measurement and an indirect method, the
Trojan Horse method, suggests the screening potential
Ue = 180 ± 40 eV (the corresponding enhancement fac-
tor is shown with the dot-dashed curve) [9]. The average
enhancement factors f̄e over events in our simulations us-
ing the CoMD are shown with the open and closed squares
for the reactions 3He+d and 3He+D, respectively. The en-
hancement factors of both reactions 3He+d and 3He+D
are in agreement with the extracted values using the R-
matrix approach within the variances over all the events.
Notice that our calculated enhancement factors for the
two systems display an opposite trend as compared to the
adiabatic limits. The average enhancement factor of the
reaction 3He+D agrees with the estimation of the adia-
batic limit and the reaction 3He+d is below the corre-
sponding adiabatic limit. The paradoxical feature comes
from the fact that an electron between two ions is of-
ten kicked out during the reaction process, i.e., the elec-
tron configuration seldom settles down the 5Li+ ground
state in the reaction 3He+d. It is known as autoionization
in the context of the Classical Trajectory Monte Carlo
method [21]. On the contrary, in the case of 3He+D, the
deuterium projectile brings its bound electron in a tight
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Fig. 5. Same as fig. 4 but for the reactions 6Li+d and 6Li+D.

bound state around the unified nuclei of 3He and d; prac-
tically it ends up with a ground-state configuration of the
5Li atom. The fits of the obtained enhancement factors
suggest the screening potentials Ue = 82.4±1.9 eV for the
3He+d and Ue = 102.8± 3.0 eV for the

3He+D.

3.3 6Li+d, 6Li+D, 7Li+p and 7Li+H

The S-factors for the reactions 6Li+d, 6Li+p and 7Li+p
were measured over the energy range 10 keV < Ecm <
1450 keV by Engstler et al. [22]. They used LiF solid tar-
gets and hydrogen projectiles as well as hydrogen molec-
ular gas targets and Li projectiles. In the case of LiF tar-
get which is a large band gap insulator, one often ap-
proximates the electronic structure of the target 6Li(7Li)
state by the 6Li+(7Li+) with only two innermost electrons.
Thus for all three reactions one expects the screening po-

tential in the adiabatic limit U
(AD)
e = 371.8 − 198.2 ∼

174 eV. On the contrary, if one uses the ground state of
the 6Li(7Li) atom and of the bare deuteron target as the

initial state, U
(AD)
e = 186 eV [23], which is given by the

solid curve in fig. 5. However one should be aware that
the deuteron or hydrogen projectile plausibly moves with
a bound electron in LiF solid insulator target [24]. Un-
der such an assumption we could estimate the screening

potential U
(AD)
e = 389.9 − 198.2 ∼ 192 eV. In the case of

molecular D2 or H2 gas targets, as well, we should consider
the electron capture by the lithium projectile.

The bare S-factors for the same reaction have been
extracted using an indirect method, the Trojan-Horse
method through the reaction 6Li(6Li, αα)4He [8]. The
comparison between direct and the indirect methods gives
the screening potential Ue = 320±50 eV. The correspond-
ing enhancement factors are shown with the dash-dotted
curve. The contrast between the direct measurement data
and the theoretical estimation for the bare S-factor using
the R-matrix theory gives Ue = 240 eV. It is shown with
the dotted line. The extracted Ue with the two different
methods are larger than the adiabatic limit.

We simulate the reactions 6Li+d, 6Li+D, 7Li+p and
7Li+H. In fig. 5 (and 6) the open and closed squares show
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Fig. 6. Same as fig. 4 but for the reactions 7Li+p and 7Li+H.

the enhancement factor for the reactions 6Li+d and 6Li+D
(and 7Li+p and 7Li+H), respectively. Again the average
enhancement factors of the reaction 6Li+D (7Li+H) are
larger than those of the 6Li+d (7Li+p). The enhancement
factors of the reaction 6Li+D are in agreement with the
extracted values using the R-matrix approach within the
variances over all the events. The fit of the obtained aver-
age enhancement factors suggests the screening potentials
Ue = 152.0 ± 9.9 eV for 6Li+d and Ue = 214.4 ± 18.5 for
6Li+D. The screening potential for the reaction 6Li+d in
our simulation does not exceed the adiabatic limit nor the
extracted values using the R-matrix theory and the THM,
but that for 6Li+D verges to the extracted values using
the R-matrix approach.

4 Summary

We discussed the effect of the screening by the electrons
in nuclear reactions at the astrophysical energies. We per-
formed molecular dynamics simulations with constraints
and imaginary time for the reactions D+d, D+D, 3He+d,
3He+D, 6Li+d, 6Li+D, 7Li+p, 7Li+H. For all the reac-
tions it is shown that both the average enhancement fac-
tors and their variances increase as the incident energy
becomes lower. Using bare projectiles we obtained the av-
erage screening potential smaller than the value in the
adiabatic limit for all reactions. This is because of the ex-
citation or emission of several bound electrons during the
reactions. The comparison between the bare and atomic
projectile cases for each reaction revealed that the electron
capture of the projectile leads to larger enhancements.
The derived enhancement factors in our simulation are
in agreement with those extracted within the R-matrix
approach including the variances over all the events.

We report also the results of the numerical experi-
ments using polarized targets for the reaction D+d. Using
P⊥ targets, we obtained relatively large enhancements
with small variances. While P‖ targets give large variances
of the enhancement factors and relatively small averaged
enhancement factors. This is because with the P‖ targets

the force exerted from the electron to the relative motion
of the nuclei is oscillational, in the direction of the beam
axis, and the motion of the electron becomes often ex-
cited or unstable. It is the case where the chaoticity of
the electron motion affects the tunneling probability and
at the same time the enhancement factor of the cross-
section. This suggests that if one performs experiments
at very low bombarding energies with polarized targets,
the enhancement factor can be controlled by changing the
polarization. The largest enhancement will be obtained
in reactions with targets polarized perpendicularly to the
beam direction.
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