Skip to main content
Log in

Pion mass dependence of the nucleon mass in the chiral quark soliton model

  • Hadron Physics
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The dependence of the nucleon mass on the mass of the pion is studied in the framework of the chiral quark-soliton model. A remarkable agreement is observed with lattice data from recent full dynamical simulations. The possibility and limitations to use the results from the chiral quark soliton model as a guideline for the chiral extrapolation of lattice data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Phys. Rev. D 10, 2445 (1974).

    Article  ADS  Google Scholar 

  2. M. Creutz, Quarks, Gluons and Lattices (Cambridge University Press, Cambridge, 1983)

  3. CP-PACS Collaboration (S. Aoki), Phys. Rev. D 60, 114508 (1999) (arXiv:hep-lat/9902018)

    Article  ADS  Google Scholar 

  4. CP-PACS Collaboration (A. Ali Khan), Phys. Rev. D 65, 054505 (2002)

    Article  ADS  Google Scholar 

  5. JLQCD Collaboration (S. Aoki), Phys. Rev. D 68, 054502 (2003) (arXiv:hep-lat/0212039).

    Article  ADS  MathSciNet  Google Scholar 

  6. UKQCD Collaboration (C.R. Allton), Phys. Rev. D 65, 054502 (2002) (arXiv:hep-lat/0107021).

    Article  ADS  Google Scholar 

  7. QCDSF-UKQCD Collaboration (A. Ali Khan), Nucl. Phys. B 689, 175 (2004) (arXiv:hep-lat/0312030).

    Article  ADS  Google Scholar 

  8. Y. Aoki, Phys. Rev. D 72, 114505 (2005) (arXiv:hep-lat/0411006).

    Article  ADS  MathSciNet  Google Scholar 

  9. MILC Collaboration (C.W. Bernard), Phys. Rev. D 64, 054506 (2001) (arXiv:hep-lat/0104002).

    Article  ADS  Google Scholar 

  10. MILC Collaboration (C. Aubin), Phys. Rev. D 70, 114501 (2004) (arXiv:hep-lat/0407028).

    Article  ADS  Google Scholar 

  11. CSSM Lattice Collaboration (J.M. Zanotti), Phys. Rev. D 65, 074507 (2002) (arXiv:hep-lat/0110216).

    Article  ADS  Google Scholar 

  12. J. Gasser, Ann. Phys. (N.Y.) 136, 62 (1981).

    Article  Google Scholar 

  13. J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).

    Article  MathSciNet  Google Scholar 

  14. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001) (arXiv:hep-ph/0103088).

    Article  ADS  Google Scholar 

  15. V. Bernard, T.R. Hemmert, U.G. Meissner, Nucl. Phys. A 732, 149 (2004) (arXiv:hep-ph/0307115).

    Article  ADS  MATH  Google Scholar 

  16. M. Procura, T.R. Hemmert, W. Weise, Phys. Rev. D 69, 034505 (2004) (arXiv:hep-lat/0309020).

    Article  ADS  Google Scholar 

  17. V. Bernard, T.R. Hemmert, U.G. Meissner, Phys. Lett. B 622, 141 (2005) (arXiv:hep-lat/0503022).

    Article  ADS  Google Scholar 

  18. M. Frink, U.G. Meissner, JHEP 0407, 028 (2004) (arXiv:hep-lat/0404018)

    Article  ADS  Google Scholar 

  19. S.R. Beane, Nucl. Phys. B 695, 192 (2004) (arXiv:hep-lat/0403030).

    Article  ADS  Google Scholar 

  20. D.B. Leinweber, D.H. Lu, A.W. Thomas, Phys. Rev. D 60, 034014 (1999) (arXiv:hep-lat/9810005).

    Article  ADS  Google Scholar 

  21. D.B. Leinweber, A.W. Thomas, K. Tsushima, S.V. Wright, Phys. Rev. D 61, 074502 (2000) (arXiv:hep-lat/9906027).

    Article  ADS  Google Scholar 

  22. D.B. Leinweber, A.W. Thomas, S.V. Wright, Phys. Lett. B 482, 109 (2000) (arXiv:hep-lat/0001007).

    Article  ADS  Google Scholar 

  23. R.D. Young, D.B. Leinweber, A.W. Thomas, S.V. Wright, Phys. Rev. D 66, 094507 (2002) (arXiv:hep-lat/0205017).

    Article  ADS  Google Scholar 

  24. D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004) (arXiv:hep-lat/0302020).

    Article  ADS  Google Scholar 

  25. D.I. Diakonov, V.Y. Petrov, JETP Lett. 43, 75 (1986) (Pisma Zh. Eksp. Teor. Fiz. 43, 57 (1986)).

    ADS  Google Scholar 

  26. D.I. Diakonov, V.Y. Petrov, P.V. Pobylitsa, Nucl. Phys. B 306, 809 (1988).

    Article  ADS  Google Scholar 

  27. D.I. Diakonov, V.Y. Petrov, Nucl. Phys. B 245, 259 (1984).

    Article  ADS  Google Scholar 

  28. D.I. Diakonov, V.Y. Petrov, Nucl. Phys. B 272, 457 (1986).

    Article  ADS  Google Scholar 

  29. For reviews see, D.I. Diakonov, V.Y. Petrov, in At the Frontier of Particle Physics, edited by M. Shifman, Vol. 1 (World Scientific, Singapore, 2001) pp. 359-415 (arXiv:hep-ph/0009006)

  30. D.I. Diakonov, V.Y. Petrov, M. Praszałowicz, Nucl. Phys. B 323, 53 (1989).

    Article  ADS  Google Scholar 

  31. C.V. Christov, Prog. Part. Nucl. Phys. 37, 91 (1996).

    Article  Google Scholar 

  32. D.I. Diakonov, Nucl. Phys. B 480, 341 (1996)

    Article  ADS  Google Scholar 

  33. V.Y. Petrov, P.V. Pobylitsa, M.V. Polyakov, I. Börnig, K. Goeke, C. Weiss, Phys. Rev. D 57, 4325 (1998)

    Article  ADS  Google Scholar 

  34. R.F. Dashen, E. Jenkins, A.V. Manohar, Phys. Rev. D 49, 4713 (1994)

    Article  ADS  Google Scholar 

  35. C. Schüren, E. Ruiz Arriola, K. Goeke, Nucl. Phys. A 547, 612 (1992).

    Article  ADS  Google Scholar 

  36. P. Schweitzer, Phys. Rev. D 69, 034003 (2004) (arXiv:hep-ph/0307336).

    Article  ADS  Google Scholar 

  37. T.D. Cohen, W. Broniowski, Phys. Lett. B 292, 5 (1992) (arXiv:hep-ph/9208253).

    Article  ADS  Google Scholar 

  38. D.I. Diakonov, M.I. Eides, JETP Lett. 38, 433 (1983) (Pisma Zh. Eksp. Teor. Fiz. 38, 358 (1983)).

    ADS  Google Scholar 

  39. A. Dhar, R. Shankar, S.R. Wadia, Phys. Rev. D 31, 3256 (1985).

    Article  ADS  Google Scholar 

  40. E. Witten, Nucl. Phys. B 223, 433 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  41. P.V. Pobylitsa, E. Ruiz Arriola, T. Meissner, F. Grummer, K. Goeke, W. Broniowski, J. Phys. G 18, 1455 (1992).

    Article  ADS  Google Scholar 

  42. M. Gockeler, in Proceedings of Lattice 2005, 25-30 July 2005, Trinity College, Dublin, hep-lat/0509196.

  43. R. Sommer, Nucl. Phys. B 411, 839 (1994) (arXiv:hep-lat/9310022).

    Article  ADS  Google Scholar 

  44. K. Goeke, T. Ledwig, P. Schweitzer, A. Silva, in preparation.

  45. ALPHA Collaboration (R. Sommer), Nucl. Phys. Proc. Suppl. 129, 405 (2004) (arXiv:hep-lat/0309171).

    Article  ADS  Google Scholar 

  46. O. Bär, Nucl. Phys. Proc. Suppl. 140, 106 (2005) (arXiv:hep-lat/0409123).

    Article  ADS  Google Scholar 

  47. H. Hellmann, Einführung in die Quantenchemie (Leip\-zig, Deuticke Verlag, 1937)

  48. S.J. Dong, J.F. Lagae, K.F. Liu, Phys. Rev. D 54, 5496 (1996).

    Article  ADS  Google Scholar 

  49. M. Wakamatsu, Phys. Rev. D 46, 3762 (1992).

    Article  ADS  Google Scholar 

  50. H.C. Kim, A. Blotz, C. Schneider, K. Goeke, Nucl. Phys. A 596, 415 (1996).

    Article  ADS  Google Scholar 

  51. P. Schweitzer, Phys. Rev. D 67, 114010 (2003) (arXiv:hep-ph/0303011). For an overview on $e(x)$ see, A.V. Efremov, P. Schweitzer, JHEP 0308, 006 (2003) (arXiv:hep-ph/0212044).

    Article  ADS  Google Scholar 

  52. W.B. Kaufmann, G.E. Hite, Phys. Rev. C 60, 055204 (1999)

    Article  ADS  Google Scholar 

  53. R. Koch, Z. Phys. C 15, 161 (1982)

    Article  Google Scholar 

  54. D.I. Diakonov, V.Y. Petrov, M.V. Polyakov, Z. Phys. A 359, 305 (1997) (arXiv:hep-ph/9703373).

    Article  Google Scholar 

  55. K. Hicks, arXiv:hep-ex/0412048

  56. P. Schweitzer, Eur. Phys. J. A 22, 89 (2004) (arXiv:hep-ph/0312376).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schweitzer.

Additional information

U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goeke, K., Ossmann, J., Schweitzer, P. et al. Pion mass dependence of the nucleon mass in the chiral quark soliton model. Eur. Phys. J. A 27, 77–90 (2006). https://doi.org/10.1140/epja/i2005-10229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10229-5

PACS.

Navigation